Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Sound Package Optimization of Passenger Bus Using Hybrid Statistical Energy Analysis

2021-09-22
2021-26-0268
Increasing demands for high fuel efficiency requires imperative light weighting of automotive structure, but this adversely affects the NVH performance since transfer path of noise sources like engine, road, wind to vehicle interior through the panels weakens. Also increasing customer centric approach drives the urge to provide world-class comfort which is cost-effective too. Sound Packaging helps us to optimize this transfer paths through the panel, and can effectively complement efforts of testing team, by reducing the redundant iterations required to conclude to most effective trims to be put on. statistical energy analysis based simulations is employed for carrying out these iterations at the virtual validation gateway itself.
Technical Paper

Improved Powertrain Mounts Position for Four Cylinder Engine Commercial Vehicle with Four Point Mounting Configuration

2016-02-01
2016-28-0231
In this era of engine downsizing, the powertrains with higher power densities are configured on next generation vehicles. The bare four cylinder engine without balancer shaft has higher surface velocities, sound pressure & power levels and nearly 10 to 15% higher base level vibration/forces over older generations. Adapting such engines on a new vehicle platform with stringent NVH targets is challenging. Powertrain mount modal analysis, 6DOF or 16DOF is a primary tool followed for initial mount positioning and stiffness definition. From our earlier experiences we have the knowledge that most of the 6DOF iterations lead to the mount positions which are less feasible as per vehicle architecture and packaging point of view, and further optimization is needed to arrive at suitable mount position through 6DOF analysis. In a drive to have first time right solution with minimal modifications, the study was conducted to understand the role of mount position & isolation on different vehicles.
Technical Paper

A Development of Booming Index of Diesel SUV by using Artificial Neural Network

2012-06-13
2012-01-1542
In today's competitive scenario, understanding mental modal map of individual customer perception plays a major role to create the brand image of vehicle. Among them “comfortable sound” is one of the important criteria for customer satisfaction, especially in case of diesel vehicle, where in-cab sound quality plays a crucial factor. Often customer perception concerning comfort in automotive industry relies on subjective comfort evaluation method. Converting the customer perception into objective measurements and to correlate them is often tough task for NVH engineers. It is because of human sensation behavior differs from persons to person, mental map, geographical location and domain knowledge. In addition acoustic & comfort relevant aspects are often subjectively evaluated based on jury trials conducted on the prototype vehicle and class competitive benchmark vehicles to get the feel & confidence of product for different gateways.
Technical Paper

Investing Factors Affecting Door Slam Noise of SUV and Improved Performance by DFSS Approach

2011-05-17
2011-01-1595
Recent development in automobile industries has seen increased customer attention for good door slamming noise. One of the constituent which plays major role in building brand image of vehicle in terms of NVH performance is door slam noise quality. Hence it is very desirable to understand how different door elements radiate sound during a door-closing event and how to optimize a door structure to achieve specific sound target in order to ensure the door closing noise quality, NVH engineers needed to look at contributions from different door subsystems. The use of statistical tools like Six Sigma can further help them to ensure the consistency in results. This paper explains the systematic approach used to characterize different element of door which contributes to the overall door slam noise quality through QFD (Quality Function Deployment) and contribution analysis. The different mechanisms contributing to door slam noise were studied.
Technical Paper

Application of Dual Density Light Weight Dash Acoustic Insulators in SUVs

2009-05-19
2009-01-2143
In the recent past a lot of emphasis is given for the overall weight reduction of the sound package used in the vehicles. The paper presents a study of one of such materials used in the automotive market. The dash panel is a primary area for the engine noise transmission to the cabin. Hence the material selection of the dash inner acoustic insulation is critical. In the conventional method a barrier (EVA) and a decoupler (foam) is used. In the conventional design the surface weight of the barrier has to be substantially high for the dash insulation to perform effectively and hence adds to more weight. In the present application of light weight material also known as dual density absorbers and barrier is used for the dash acoustic insulator. The study reveals the good acoustic performance of the light weight dash mat in terms of passenger cabin noise reduction and improved sound quality along with weight reduction.
X