Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

Development of a Solid Exhaust Particle Number Measurement System Using a Catalytic Stripper Technology

2011-04-12
2011-01-0635
A solid particle number measurement system (SPNMS) was developed using a catalytic stripper (CS) technology instead of an evaporation tube (ET). The ET is used in commercially available systems, compliant with the Particle Measurement Program (PMP) protocol developed for European Union (EU) solid particle number regulations. The catalytic stripper consists of a small core of a diesel exhaust oxidation catalyst. The SPNMS/CS met all performance requirements under the PMP protocol. It showed a much better performance in removing large volatile tetracontane particles down to a size well below the PMP lower cut-size of 23 nm, compared to a SPNMS equipped with an ET instead of a CS. The SPNMS/CS also showed a similar performance to a commercially available system when used on a gasoline direct injection (GDI) engine exhaust.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Journal Article

Particle Emissions from a 2009 Gasoline Direct Injection Engine Using Different Commercially Available Fuels

2010-10-25
2010-01-2117
Total and solid particle mass, size, and number were measured in the dilute exhaust of a 2009 vehicle equipped with a gasoline direct injection engine along with an exhaust three-way-catalyst. The measurements were performed over the FTP-75 and the US06 drive cycles using three different U.S. commercially available fuels, Fuels A, B, and C, where Fuel B was the most volatile and Fuel C was the least volatile with higher fractions of low vapor pressure hydrocarbons (C10 to C12), compared to the other two fuels. Substantial differences in particle mass and number emission levels were observed among the different fuels tested. The more volatile gasoline fuel, Fuel B, resulted in the lowest total (solid plus volatile) and solid particle mass and number emissions. This fuel resulted in a 62 percent reduction in solid particle number and an 88 percent reduction in soot mass during the highest emitting cold-start phase, Phasel, of the FTP-75, compared to Fuel C.
Technical Paper

Diesel Exhaust Particulate Sampler for On-board PM Measurement

2008-04-14
2008-01-1180
Horiba on-board diesel exhaust particulate sampler (OBS-PM) is a filter based partial flow particulate sampling system used for On-board diesel particulate matter (PM) measurement. It takes sample from either raw or diluted exhaust. It can run at constant dilution ratios or at variable dilution ratios with proportional control on the sample flow. The diluted exhaust moves through a pre-weighed 47 mm particulate filter and PM is collected on the filter. By weighing the loaded sample filter, PM emission from the engine or the vehicle can be determined. The performance of the OBS-PM meets most of requirements for a real-time partial flow sample system (PFSS) recommended by ISO 16183 [2]. The physical size and the power consumption of the instrument are minimized. It is powered with four 12 volts batteries, and can be installed on a vehicle for real-world PM emission evaluation.
Technical Paper

Verification of a Gaseous Portable Emissions Measurement System with a Laboratory System Using the Code of Federal Regulations Part 1065

2010-04-12
2010-01-1069
This paper summarizes the validation testing of the Horiba Instruments OBS-2200 gaseous portable emissions measurement system (PEMS) for in-use compliance testing per Title 40 of the Code of Federal Regulations (CFR) Part 1065.920 (Section 1065.920). The qualification process included analyzer verifications as well as engine testing on a model-year 2007 heavy-duty diesel engine produced by Volvo Powertrain. The measurements of brake-specific emissions with the OBS-2200 were compared to those of a CFR Part 1065-compliant CVS test cell over a series of not-to-exceed (NTE) events. The OBS-2200 passed all linearity verifications and analyzer checks required of PEMS. Engine test validation was achieved for all three regulated gaseous emissions (CO, NMHC, and NOX) per 40 CFR Part 1065.920(b)(5)(i), which requires a minimum of 91 percent of the measurement allowance adjusted deltas to be less than or equal to zero.
X