Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Modelling of NOx Storage + SCR Exhaust Gas Aftertreatment System with Internal Generation of Ammonia

2010-04-12
2010-01-0887
Combination of an NOx storage and reduction catalyst (NSRC, called also lean NOx trap, LNT) and a catalyst for the selective catalytic reduction of NOx by NH₃ (NH₃-SCR) offers a potential to significantly increase the efficiency of NSRC-based exhaust gas aftertreatment systems. Under most situations the SCR catalyst is able to adsorb the NH₃ peaks generated in the NSRC during the regeneration and utilize it for additional NOx reduction in the course of the consequent lean phase. This synergy becomes more important with the aged NSRC, where generally lower NOx conversions and higher NH₃ yields in wider range of operating temperatures are observed (in comparison with the fresh or de-greened NSRC). In this paper we present global kinetic models for the NSRC (Pt/Ba/Ce/gγ-Al₂O₃ catalyst type) and NH₃-SCR (Fe-ZSM5 catalyst type).
Journal Article

Effects of Biofuel Blends on Performance of Exhaust Gas Catalyst: Ethanol and Acetaldehyde Reactions

2010-04-12
2010-01-0894
The use of biofuels in internal combustion engines changes the composition of the engine exhaust gas. When burning a biofuel blend, significant amounts of oxygenated hydrocarbons such as alcohols, ethers and aldehydes are present in the exhaust gas. It is known, that these compounds influence catalytic processes in exhaust gas converters. In this work we propose a global kinetic model for ethanol and acetaldehyde oxidation on commonly used Pt, PtPd and Pd-based catalytic oxidation converters of automobile exhaust gases. The mechanism is based on two steps: (i) partial oxidation of ethanol to acetaldehyde, and (ii) complete oxidation of acetaldehyde to CO₂ and H₂O. Kinetic parameters of ethanol and acetaldehyde reactions are evaluated on the basis of laboratory light-off experiments with several catalytic monolith samples (noble metal loading 9-140 g/cft; Pt, Pd, and PtPd; at space velocity 30 000-240 000 h-₁).
Technical Paper

Simulation Of NOx Storage and Reduction Catalyst: Model Development And Application

2007-04-16
2007-01-1117
To fulfill future emission standards for diesel engines, combined after-treatment systems consisting of different catalyst technologies and diesel particulate filters (DPF) are necessary. For designing and optimizing the resulting systems of considerable complexity, effective simulation models of different catalyst and DPF technologies have been developed and integrated into a common simulation environment called ExACT (Exhaust After-treatment Components Toolbox). This publication focuses on a model for the NOx storage and reduction catalyst as a part of that simulation environment. A heterogeneous, spatially one-dimensional (1D), physically and chemically based mathematical model of the catalytic monolith has been developed. A global reaction kinetic approach has been chosen to describe reaction conversions on the washcoat. Reaction kinetic parameters have been evaluated from a series of laboratory experiments.
X