Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Improved Comfort Analysis and Drivability Assessment by the Use of an Extended Power Train Model for Automatic Transmissions

2012-06-13
2012-01-1529
The new generation of automatic transmissions is characterized by a compact and highly efficient design. By the use of a higher overall gear ratio and lightweight components combined with optimal gear set concepts it is possible to improve significantly fuel consumption and driving dynamics. Precise and efficient real time models of the whole power train including models for complex subsystems like the automatic transmission are needed to combine real hardware with virtual models on XiL test rigs. Thereby it's possible to achieve a more efficient product development process optimized towards low development costs by less needed prototypes and shorter development times by pushing front loading in the process. In this paper a new real time model for automatic transmissions including approved models for the torque converter, the lock-up clutch and the torsional damper are introduced. At the current development stage the model can be used for comfort analysis and drivability assessment.
Technical Paper

On the Use of the Wave Based Technique for a Three-Dimensional Noise Radiation Analysis of Coupled Vibro-Acoustic Problems

2011-05-17
2011-01-1713
Driven by both the ever more restrictive legal regulations on human exposure to noise and the growing customers' expectations regarding the functional performance of a product, the vibro-acoustic behaviour of the product have gained a significant importance over the last decades. At the same time, product development phase and costs have been reduced in order to comply with the nature of competitive market. To cope with those conflicting design targets, the computer aided engineering (CAE) became an essential part of the product design process. A broad class of engineering vibro-acoustic problems involves the mutual coupling interaction between the structure and fluid. In this type of problem, the back-coupling effects are no longer negligible and the problem has to be considered as a fully coupled system. The conventional state-of-the-art techniques adopt the element-based schemes, such as the finite (FEM), boundary (BEM) and infinite element method (I-FEM).
Journal Article

Power Train Model Refinement Linked with Parameter Updating Through Nonlinear Optimization

2010-06-09
2010-01-1421
In the virtual development process validated simulation models are requested to accurately predict power train vibration and comfort phenomena. Conclusions from refined parameter studies enable to avoid costly tests on rigs and on the road. Thereby, an appropriate modeling approach for specific phenomena has to be chosen to ensure high quality results. But then, parameters for characterizing the dynamic properties of components are often insufficient and have to be roughly estimated in this development stage. This results in a imprecise prediction of power train resonances and in a less conclusive understanding of the considered phenomena. Conclusions for improvements remain uncertain. This paper deals with the two different aspects of model refinement and parameter updating. First an existing power train model (predecessor power train) is analyzed whether the underlying modeling approach can reproduce the physical behavior of the power train dynamics adequately.
Technical Paper

Multi-body Dynamics Based Gear Mesh Models for Prediction of Gear Dynamics and Transmission Error

2010-04-12
2010-01-0897
Gear trains applied to automotive transmissions and combustion engines are potential excitation sources of undesired whine noise. Consequently, the prediction of gear whine issues in an early stage of the product development process is strongly requested. Beside the actual excitation mechanism which is closely related to the gear's transmission error, the vibratory behavior (e.g. resonances) of other affected components like shafts, bearings and housing plays an important role in terms of structure borne noise transfer. The paper deals with gear contact models of different degree of detail, which are embedded in a multi-body dynamics (MBD) environment. Since gear meshing frequency and their harmonics may easily reach up to 5 kHz or even 10 kHz, applied gear contact models must be highly efficient with respect to calculation performance. Otherwise, major requirements of the development process in terms of process time can not be satisfied as is the case with FEA-based contact models.
Journal Article

Application of the Wave Based Technique to Predict the Engine Noise Radiation Under Anechoic Conditions

2009-05-19
2009-01-2211
As an alternative to the element based methods, recently a wave based technique (WBT) has been developed. Since it is based on the indirect Trefftz approach, exact solutions of the governing differential equation are used to approximate the dynamic field variables. This paper discusses the extensions of the WBT for the analysis of engine noise radiation problems in 3 dimensions under anechoic conditions. Furthermore, necessary extensions of shape functions, numerical integration and a methodology to create a WBT radiation models are described. The performance of the method compared to a commercial BEM solution is demonstrated with a real engine example.
Technical Paper

The Application of a New Software Tool for Separating Engine Combustion and Mechanical Noise Excitation

2007-05-15
2007-01-2376
The optimization of engine NVH is still an important aspect for vehicle interior and exterior noise radiation. To optimize the engine noise / vibration contribution to the vehicle, a complete understanding of the excitation mechanism, the vibration transfer in the engine structure and the radiation efficiency of the individual engine components is required. Concerning the excitation within the engine, a very efficient analysis methodology for the combustion- and mechanical excitation within gasoline and diesel engines has been developed. Out of this methodology a software tool has been designed for a fast, efficient and detailed evaluation of the combustion- and mechanical excitation content of total engine noise. Recently this software tool has been successfully applied in engine NVH optimization work for defining the best optimization strategies for engine NVH reduction and noise quality improvement especially with respect to combustion excitation.
Technical Paper

Simulation of Engine's Structure Borne Noise Excitation due to the Timing Chain Drive

2002-03-04
2002-01-0451
Due to durability and lifetime requirements, the timing drive systems of modern passenger car engines are often equipped with chain drives. Chain driven systems are usually more critical in view of NVH compared to synchronous belt-drives. Mainly the polygonal effect and the related phenomena, like impacts caused by the meshing between the chain-links and impacts in the engagement/disengagement regions of guides and sprockets, lead to an increased excitation of the engine's structure. Since the polygonal effect occurs with the meshing frequency, the excited vibrations are basically narrow banded and can finally be recognized as an annoying whine-noise. This paper describes the modeling (MBS) of the entire timing-drive system containing a bushing-chain-drive, camshafts and all connected single valve trains. The investigations carried out are mainly focused on the primary dynamics of the chain drive and the forces which are transferred to the engine's structure.
Technical Paper

A Methodology to Simulate Piston Secondary Movement under Lubricated Contact Conditions

2001-03-05
2001-01-0565
The authors want to introduce a general methodology for the simulation of the dynamics of the piston-liner contact considering a realistic oil film at inner liner wall. Because of the complexity of this problem and in order to minimize computing time a twin model was developed. Firstly, a simplified model is used to compute piston motion trends and piston ring lubrication in minimum simulation time. Secondly a very detailed model simulating multi-body dynamics, surface vibrations and elasto-hydrodynamic contact is applied. Both, the theoretical background of the twin model and the advantages of the coupled simulation procedure given in the wide range of considerable influences are discussed. The result examples focus on interaction effects of piston secondary movement and the influence of the available oil film. Finally, the status of verification of the models using measured results is shown.
Technical Paper

Simulation of Piston Ring Dynamics and Their Effect on Oil Consumption

2000-03-06
2000-01-0919
The sealing effect of piston rings in reciprocating engines have a major impact on blow-by and lube oil consumption (LOC). The sealing is achieved by the gas forces acting on the top and back side of the rings. In addition, the load in the radial direction is increased by the initial ring tension. Inertia forces arising from the oscillating vertical stroke and shear forces due to the secondary piston movement influence this sealing effect by a reduction in contact pressure. Numerical simulation of the piston and ring dynamics solves this non-linear problem and predicts the interaction between piston secondary motion, axial ring motion, and 2nd land pressure. This paper describes the modeling of the cylinder kit dynamics of a six-cylinder truck diesel engine for several operating conditions and ring modifications. The influence of boundary conditions and adjustment parameters on piston ring motion and gas penetration was investigated.
X