Refine Your Search

Search Results

Author:
Viewing 1 to 13 of 13
Journal Article

Extended Investigations on Micro-Grooved Elements - A Novel Solution for Noise Control

2013-09-08
2013-24-0068
The goal of this paper is to provide a complete characterization of acoustic performance for a novel type of advanced acoustic material - micro grooved element (MGE). In a previous study, the MGEs have been proved to offer a respectable alternative for the existing and increasingly popular micro perforated elements (MPEs). The MGEs are multi-layer elements where the acoustic attenuation effect originates from viscous losses taking place in a number of sub-millimeter grooves forming acoustic micro-paths inside the material. This new configuration allows to replace the laser perforation process, used to manufacture the MPEs, with less time consuming and more cost effective technologies. Moreover, such elements preserve low weight and surface roughness. Experiments have demonstrated that the MGEs can be regarded as suitable solution for noise control in a wide range of applications.
Journal Article

Micro-Grooved Elements - A Novel Solution for Noise Control

2013-05-13
2013-01-1941
The goal of this paper is to present a novel type of advanced acoustic material - micro grooved element (MGE) - which is designed for noise control in a wide range of applications. MGEs have been proved to offer a respectable alternative for the existing micro-perforated elements (MPEs), while being cost effective and causing low pressure loss. These elements have been found to be suitable for substitution of fibrous materials, typically present in silencer units. Currently, the cost of the MPEs is relatively high due to the technological complexity of manufacturing process. On the other hand, cheaper solutions of MPEs, based on irregularly shaped micro-apertures, potentially cause higher pressure loss due to surface roughness. The key concept of the MGEs is the use of micro-grooves forming acoustic channels, instead of the micro-holes of MPEs, which the sound wave has to pass.
Technical Paper

Acoustical Methods for Investigating Turbocharger Flow Instabilities

2013-05-13
2013-01-1879
In order to increase the internal combustion engine efficiency turbocharging is today widely used. The trend, in modern engine technology, is towards higher boost pressures while keeping the combustion pressure raise relatively small. The turbocharger surge occurs if the pressure at the outlet of the compressor is greater than it can maintain, i.e., a reverse flow will be induced. In presence of such flow conditions instabilities will occur which can couple to incident acoustic (pressure) waves and amplify them. The main objective of the present work is to propose a novel method for investigation of turbocharger flow instabilities or surge precursors. The method is based on the determination of the acoustic two-port data. The active part of this data describes the sound generation and the passive part the scattering of sound. The scattering data will contain information about flow-acoustic interaction and amplification of sound that could occur close to surge.
Technical Paper

Acoustic Studies of Micro-Perforates for Small Engine Silencers

2012-10-23
2012-32-0107
To respond growingly strict environmental regulations the acousticians are challenging to develop novel types of silencing elements. There are different types of flow duct elements designed for silencing the pulsating gas flows into and out of fluid machines. The silencing effect is typically achieved by introducing acoustic reflection and absorption. In order to achieve a good absorption in a wide frequency band, various fibrous materials e.g. wools are typically implemented. However, the physical properties of such materials do not often remain constant during the lifetime of a silencer. As the fibers tend to relocate and can partly be blown out to surroundings, acoustical performance may deteriorate. Therefore, it is in great interest to avoid fibrous materials in the design of the flow duct silencing elements. The present work is focused on the modern type of absorptive acoustic element - a micro-perforated element.
Technical Paper

A Novel Design for Cruiser Type Motorcycle Silencer Based on Micro-Perforated Elements

2012-10-23
2012-32-0109
Regulations stipulating the design of motorcycle silencers are strict, especially when the unit incorporates fibrous absorbing materials. Therefore, innovative designs substituting such materials while still preserving acceptable level of characteristic sound are currently of interest. Micro perforated elements are innovative acoustic solutions, which silencing effect is based on the dissipation of the acoustic wave energy in a pattern of sub-millimeter apertures. Similarly to fibrous materials the micro-perforated materials have been proved to provide effective sound absorption in a wide frequency range. Additionally, the silencer is designed as a two-stage system that provides an optimal solution for a variety of exploitation conditions. In this paper a novel design for a cruiser type motorcycle silencer, based on micro-perforated elements, is presented.
Journal Article

Investigations of Automotive Turbocharger Acoustics

2011-09-11
2011-24-0221
In this paper an overview of recent experimental studies performed at KTH on the sound transmission and sound generation in turbochargers is presented. The compressor and turbine of the turbochargers are treated as acoustic active 2-ports and characterized using the unique experimental test facility established at KTH. The 2-port model is limited to the plane wave range so for higher frequencies the propagating acoustic power is estimated using an average based on pressure cross-spectra. A number of automotive turbochargers have been studied for a variety of operating conditions systematically selected from the compressor and turbine charts. The paper discusses the experimental procedures including special techniques implemented to improve the quality of the data. Results from a number of experiments on various modern automotive turbochargers including a unit with variable turbine geometry (VTG) are presented.
Technical Paper

The Passive Acoustic Effect of Automotive Catalytic Converters

2011-09-11
2011-24-0219
For the last couple of decades, catalytic converters (CC) have become a standard part of the internal combustion engine exhaust systems. Besides reducing toxic components in exhaust gases, catalytic converters can have a certain effect on the acoustic performance of the exhaust system. In this paper the sound transmission and attenuation in the catalytic converters has been investigated. A catalytic converter is known to have two distinct acoustic effects: the reactive effect originating from the acoustic wave reflections caused by cross-sectional area changes within the unit and the resistive effect which results in the acoustic wave dissipation caused by visco-thermal losses. The flow resistance in the narrow tubes in the catalytic converter element results in frequency dependent dissipative effects on the transmitted sound. An experimental investigation on engine catalytic converters treated as acoustic two-ports is carried out.
Technical Paper

Validation of 1D and 3D Analyses for Performance Prediction of an Automotive Silencer

2011-09-11
2011-24-0217
One dimensional (1D) and three dimensional (3D) simulations are widely used in technical acoustics to predict the behavior of duct system elements including fluid machines. In particular, referring to internal combustion engines, the numerical approaches can be used to estimate the Transmission Loss (TL) of mufflers, air boxes, catalytic converters, etc. TL is a parameter commonly used in almost any kind of acoustical filters, in order to assess the passive effects related to their sound attenuation. In this paper, a previous 1D-3D acoustical analysis of a commercial muffler, has been improved and experimentally validated. Features related to the manufacturing process, like the coupling of adjacent surfaces and the actual shape of components, have been noticed to heavily affect the muffler behavior.
Technical Paper

Sound Transmission in Automotive Turbochargers

2011-05-17
2011-01-1525
Turbochargers are common parts of a modern automotive engine. This paper presents an overview of the recent studies performed in the competence center for gas exchange studies at KTH on the sound transmission in turbochargers. The compressor and turbine of the turbochargers are treated as acoustic 2-ports and the scattering matrix for these devices are determined. A unique experimental facility established in the competence center for gas exchange research at KTH has been utilized to study the turbochargers at a variety of operating conditions systematically selected from compressor and turbine charts. A description of the experimental procedures to determine the acoustic 2-port data including techniques implemented to improve the quality of the results is presented. Results from a number of experiments on various modern automotive turbochargers including a unit with variable turbine geometry (VTG) are included.
Technical Paper

Acoustic Analysis of Small Engine Catalytic Converters

2010-09-28
2010-32-0022
Today, catalytic converters are widely used in small engine exhaust systems to reduce pollutants. Besides reducing harmful pollutants, these devices have a significant effect on the acoustical performance and the pressure drop of the engine exhaust system. A catalytic converter is known to have two distinct acoustic effects: the reactive effect originating from the acoustic wave reflections caused by cross-sectional area changes within the unit and the resistive effect which results in the acoustic wave dissipation caused by viscous losses. The pressure drop in the narrow tubes in the catalytic converter element results in frequency dependent resistive effects on the transmitted sound. In this paper the passive acoustic effect which treats the sound attenuation in the catalytic converters has been investigated. An experimental investigation on small engine catalytic converters treated as acoustic two-ports is carried out.
Technical Paper

Experimental Facility for the Complete Determination of Sound Transmission in Turbochargers

2010-06-09
2010-01-1424
In this paper a unique experimental facility designed for a complete determination of the sound transmission in turbochargers is introduced. The facility can be used to characterize the passive acoustic effect for turbocharger compressors and turbines working in realistic operating conditions by extracting the acoustic two-port data. The acoustic pressure transmission loss results for a passenger car turbocharger compressor and turbine measured in up- and downstream directions regarding the mean flow are presented. The data are obtained for various operating points of the turbocharger and the influence of operating conditions on the sound transmission is discussed.
Technical Paper

Experimental Determination of Sound Transmission in Turbo-Compressors

2009-05-19
2009-01-2045
In this paper experimental procedures to determine the sound transmission through automotive turbo-charger compressors are described. An overview of a unique turbocharger testing facility established at KTH CICERO in Stockholm is given. The facility can be used to measure acoustic two-port data for turbo-compressors. Results from measurements on a passenger car turbo-compressor are presented and the influence of operating conditions on the sound transmission is discussed.
Technical Paper

Acoustics of Turbochargers

2007-05-15
2007-01-2205
Noise from turbo-chargers is increasingly becoming an issue. Partly due to improved noise control of other components and partly due to increased specific mass flows. Despite that the turbocharging technique was developed in the first part of the last century the acoustical behavior is still a field where there is a lack of research. In this paper an overview of the existing research is presented including the work done in the EC-project ARTEMIS. Some first results from recently started investigations at the new gas management research centre, KTH CICERO, will also be described. A turbo-unit always consists of a compressor which normally is driven by an exhaust turbine. Both the turbine and the compressor will have an influence on how the low frequency engine pulsations propagate in the intake/exhaust system. This is referred to as the passive acoustic property of the turbo-unit.
X