Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Effect of Biodiesel Origin on the Regulated and PAH Emissions from a Modern Passenger Car

2011-04-12
2011-01-0615
This study investigates the impact of low concentration biodiesel blends on the regulated and polycyclic aromatic hydrocarbon (PAH) emissions from a modern passenger vehicle. The vehicle was Euro 4 compliant fitted with a direct injection common-rail diesel engine and a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer using constant volume sampling (CVS) technique, following the European regulations. All measurements were conducted over the type approval New European Driving Cycle (NEDC) and the real-traffic-based Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based, a palm-based, and a rapeseed oil-based biodiesel were blended with an ultra-low sulfur diesel at proportions of 10, 20, and 30% by volume. The experimental results revealed that emissions of PM, HC and CO decreased with biodiesel over most driving conditions.
Journal Article

An Experimental Study on the Impact of Biodiesel Origin and Type on the Exhaust Emissions from a Euro 4 Pick-up Truck

2010-10-25
2010-01-2273
This study investigates the impact of mid-high biodiesel blends on the criteria and PAH emissions from a modern pick-up diesel vehicle. The vehicle was a Euro 4 (category N1, subclass III) compliant common-rail light-duty goods pick-up truck fitted with a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer equipped with CVS, following the European regulations. All measurements were conducted over the certification New European Driving Cycle (NEDC) and the real traffic-based Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based biodiesel, a palm-based biodiesel, and an oxidized biodiesel obtained from used frying oils were blended with a typical automotive ultra-low-sulfur diesel at proportions of 30, 50 and 80% by volume. The experimental results revealed that CO₂ emissions and fuel consumption exhibited an increase with biodiesel over all driving conditions.
Journal Article

Regulated and Unregulated Emissions of a Euro 4 SUV Operated with Diesel and Soy-based Biodiesel Blends

2009-11-02
2009-01-2690
In this study, regulated, unregulated exhaust emissions and fuel consumption with ultra low sulphur diesel and soy-based biodiesel blends at proportions of 10 and 30% v/v have been investigated. A Euro 4 compliant SUV, equipped with a 2.2 litre common-rail diesel engine and an oxidation catalyst was tested on a chassis dynamometer with constant volume sampling (CVS) technique. Emission and fuel consumption measurements were performed over the New European Driving Cycle (NEDC) and the non-legislated Artemis driving cycles which simulate urban, rural, and highway driving conditions in Europe. The regulated pollutants were characterized by determined NOx, PM, CO, and HC. CO2 was also quantified in the exhaust. Overall, 16 PAHs, 4 nitro-PAHs, 6 oxy-PAHs, 13 carbonyl compounds and particulate alkanes ranged from C13 to C35 were determined in the exhaust.
Technical Paper

Effect of Metals in the Oxidation Stability and Lubricity of Biodiesel Fuel

2009-06-15
2009-01-1829
The introduction to the European market of higher levels of biodiesel blends focuses the research interest on the compatibility problems of the diesel fuel distribution system. The influence of metals in the oxidation stability and lubricity of two different types of commercially available FAMEs (without antioxidant additive) was investigated. Zinc (Zn), Copper (Cu) and Tin (Sn), were added in the form of solid metals (heterogeneous catalysis in liquid phase oxidation) and examined for their impact on the oxidation stability of biodiesel fuel. Oxidation stability was determined by Rancimat accelerated oxidation method, according to European Standard EN14214. Additionally, in order to examine the effect of the above mentioned metals in the presence of antioxidant additive, BHT was added in both biodiesel samples and oxidation stability determinations were carried out, as well.
Technical Paper

Diesel/Soy Methyl Ester Blends Emissions Profile from a Passenger Vehicle Operated on the European and the Athens Driving Cycles

2007-10-29
2007-01-4043
The need of a more realistic and dynamic driving cycle which simulates real-world driving conditions in the largest city in the greater area of Balkans, led to the development of the Athens Driving Cycle (ADC). Emission and fuel consumption measurements were conducted over the ADC and compared with those of the New European Driving Cycle (NEDC) using a chassis dynamometer. A Euro II compliant diesel vehicle was used in this study, fuelled with a typical automotive diesel fuel and biodiesel blends at proportions of 5, 10, and 20 % respectively. The unregulated emissions were characterized by determining the soluble organic fraction (SOF) in the particulate matter, together with qualitative hydrocarbon analysis present in the SOF fraction, and of carbonyl compounds (aldehydes, ketones). Emissions of NOx, CO, THC, CO2, and PM10 were also measured over the two test cycles.
Technical Paper

Regulated and Unregulated Emissions Characteristics of a Diesel Vehicle Operating with Diesel/Biodiesel Blends

2007-01-23
2007-01-0071
In the present investigation, tests were carried out to evaluate exhaust emissions of a turbocharged indirect injection diesel engine fuelled with diesel - biodiesel blends. The vehicle was Euro III compliant, fuelled with a typical diesel fuel and used frying oil methyl ester blends at proportions of 2, 5, 10, and 20% respectively. Based on the New European Driving Cycle (NEDC), regulatred and unregulated exhaust emissions were determined over a chassis dynamometer. The use of biodiesel resulted into a significant decrease of HC emissions. NOx and CO emissions exhibited a decreasing trend with the addition of the biodiesel. On the contrary, higher levels of PM emissions were observed. For carbonyl compounds, emissions of acetaldehyde were significantly increased with formaldehyde showing a slight increasing trend.
Technical Paper

Impact of Diesel/Biodiesel Blends on Emissions from a Diesel Vehicle Operated in Real Driving Conditions

2007-01-23
2007-01-0076
In this study exhaust emissions from a commercially available motor vehicle with neat diesel fuel and diesel/biodiesel blends have been investigated. The vehicle was a EURO IV class with a turbocharged direct injection engine (TDI) of 2.0 liter displacement. Methyl ester obtained from used frying oil was as the blendstock at proportions of 5, 20, and 50 % by volume. On-board emission measurements were conducted in real-world driving on a specific driving route infrastructure including altitude differentiation, humps, and various alternations on driving conditions, such as frequent accelerations and decelerations. The addition of biodiesel demonstrated a decrease in NOx, CO and smoke opacity emissions. CO2 emissions and fuel consumption showed an increase
Technical Paper

Diesel-water Emulsion Emissions and Performance Evaluation in Public Buses in Attica Basin

2006-10-16
2006-01-3398
The objective of this paper was to evaluate the performance and airborne emissions of a diesel-water emulsion in 4 public buses operated in the area of Athens. The fuels used were a typical automotive diesel from the Greek market, a low sulfur diesel and a diesel-water emulsion of 13 % v/v water in low sulfur diesel. The fuels were characterized by exposing their physicochemical properties according to EN 590. The measurements of emissions of carbon monoxide, unburned hydrocarbons and carbon dioxide did not show any significant differences among the three fuels. The effects on NOx emissions can be termed as mixed, bearing also in mind that they represent engine operation at no load. The beneficial effect of the emulsified diesel fuel could be readily observed in the case of smoke opacity emissions.
X