Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Evaluation of Uncoated Gasoline Particulate Filter Performance for US EPA MY27+ Particulate Mass Emissions Regulation

2024-04-09
2024-01-2383
The gasoline particulate filter (GPF) represents a practical solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as an essential technology in North America to meet the upcoming US EPA tailpipe emission regulation, as proposed in the “Multi-pollutant Rule for Model Year 2027”. The goal of this study was to introduce advanced, uncoated GPF products and measure their particulate mass (PM) reduction performance within the existing US EPA FTP vehicle testing procedures, as detailed in Code of Federal Regulations (CFR) part 1066. Various state-of-the-art GPF products were characterized for their microstructure properties with lab-bench checks for pressure drop and filtration efficiency, then pre-conditioned with an EPA-recommended 1500 mile on-road break-in, and finally were tested on an AWD vehicle chassis-dyno emissions test cell at both 25°C and -7°C ambient conditions.
Technical Paper

Evolution of Tailpipe Particulate Emissions from a GTDI Mild-Hybrid SUV with a Gasoline Particulate Filter

2021-04-06
2021-01-0582
The ceramic wall-flow filter has now been globally commercialized for aftertreatment systems in light-duty gasoline engine powered vehicles. This technology, known as the gasoline particulate filter (GPF), represents a durable solution for particulate emissions control. The goal of this study was to track the evolution of tailpipe particulate and gaseous emissions of a 4-cylinder gasoline turbocharged direct injected (GTDI) 2018 North American (NA) mild-hybrid light-duty SUV, from a fresh state to the 4,000-mile, EPA certification mileage level. For this purpose, a production TWC + GPF aftertreatment system designed for a China 6b-compliant variant of this test vehicle was retrofitted in place of the North American Tier 3 Bin 85 TWC-only system. Chassis dyno emissions testing was performed at predetermined mileage points with real-world, on-road driving conducted for the necessary mileage accumulation.
Technical Paper

Application of Low-Mass Corning® FLORA® Substrates for Cold-Start Emissions Reduction to Meet Upcoming LEV III SULEV30 Regulation Requirement

2020-04-14
2020-01-0652
With upcoming US Tier 3/LEV III emissions regulation set for full implementation in 2025, significant efforts are being made within the industry to meet the fleet average SULEV30 requirement. Under the current vehicle technology, cold-start emissions generated in the first sixty seconds can make up to 70+% of total tailpipe emission over the FTP-75 certification cycle. Therefore, the improvement in the performance of catalyzed substrates during cold-start becomes essential for total tailpipe emissions reduction. Low-mass substrate technology offers a significant reduction in time to light-off, enabling a reduction in cold-start emissions while meeting customer mechanical durability and thermo-mechanical requirements.
Journal Article

Low Cost LEV-III, Tier-III Emission Solutions with Particulate Control using Advanced Catalysts and Substrates

2016-04-05
2016-01-0925
A production calibrated GTDI 1.6L Ford Fusion was used to demonstrate low HC, CO, NOx, PM (particulate mass), and PN (particulate number) emissions using advanced catalyst technologies with newly developed high porosity substrates and coated GPFs (gasoline particulate filters). The exhaust system consisted of 1.2 liters of TWC (three way catalyst) in the close-coupled position, and 1.6L of coated GPF in the underfloor position. The catalysts were engine-aged on a dynamometer to simulate 150K miles of road aging. Results indicate that ULEV70 emissions can be achieved at ∼$40 of PGM, while also demonstrating PM tailpipe performance far below the proposed California Air Resources Board (CARB) LEV III limit of 1 mg/mi. Along with PM and PN analysis, exhaust system backpressure is also presented with various GPF designs.
Technical Paper

Particulate Filter Soot Load Measurements using Radio Frequency Sensors and Potential for Improved Filter Management

2016-04-05
2016-01-0943
Efficient aftertreatment management requires accurate sensing of both particulate filter soot and ash levels for optimized feedback control. Currently a combination of pressure drop measurements and predictive models are used to indirectly estimate the loading state of the filter. Accurate determination of filter soot loading levels is challenging under certain operating conditions, particularly following partial regeneration events and at low flow rate (idle) conditions. This work applied radio frequency (RF)-based sensors to provide a direct measure of the particulate filter soot levels in situ. Direct measurements of the filter loading state enable advanced feedback controls to optimize the combined engine and aftertreatment system for improved DPF management. This study instrumented several cordierite and aluminum titanate diesel particulate filters with RF sensors. The systems were tested on a range of light- and heavy-duty applications, which included on- and off-road engines.
Technical Paper

Next Generation Aluminum Titanate Filter for Light Duty Diesel Applications

2011-04-12
2011-01-0816
With the introduction of the current EU5 standards the diesel particulate filter has become a key element in the aftertreatment of diesel passenger cars. The upcoming future emission standards target primarily a further reduction in NOx emission as well as reduced fleet average CO₂ emissions. Although the particulate filter has no direct influence on the reduction of these species, the needs of future aftertreatment systems impose additional requirements on advanced filter technologies. In this paper we are introducing two new filter products based on a new low porosity aluminum titanate family that complement the current DuraTrap® AT filter products. The new products offer the potential for an increased soot mass limit or a significant reduction in pressure drop. The enhanced performance of the new filter products is discussed and demonstrated in a large number of experimental data obtained in engine bench tests.
Technical Paper

Performance Evaluations of Aluminum Titanate Diesel Particulate Filters

2007-04-16
2007-01-0656
Over the past decade, regulations for mobile source emissions have become more stringent thus, requiring advances in emissions systems to comply with the new standards. For the popular diesel powered passenger cars particularly in Europe, diesel particulate filters (DPFs) have been integrated to control particulate matter (PM) emissions. Corning Incorporated has developed a new proprietary aluminum titanate-based material for filter use in passenger car diesel applications. Aluminum titanate (hereafter referred to as AT) filters were launched commercially in the fall of 2005 and have been equipped on more than several hundred thousand European passenger vehicles. Due to their outstanding durability, filtration efficiency and pressure drop attributes, AT filters are an excellent fit for demanding applications in passenger cars. Extensive testing was conducted on engine to evaluate the survivability and long-term thermo-mechanical durability of AT filters.
X