Refine Your Search

Search Results

Author:
Viewing 1 to 13 of 13
Technical Paper

Analysis of Geo-Location Data to Understand Power and Energy Requirements for Main Battle Tanks

2024-04-09
2024-01-2658
Tanks play a pivotal role in swiftly deploying firepower across dynamic battlefields. The core of tank mobility lies within their powertrains, driven by diesel engines or gas turbines. To better understand the benefits of each power system, this study uses geo-location data from the National Training Center to understand the power and energy requirements from a main battle tank over an 18-day rotation. This paper details the extraction, cleaning, and analysis of the geo-location data to produce a series of representative drive cycles for an NTC rotation. These drive-cycles serve as a basis for evaluating powertrain demands, chiefly focusing on fuel efficiency. Notably, findings reveal that substantial idling periods in tank operations contribute to diesel engines exhibiting notably lower fuel consumption compared to gas turbines. Nonetheless, gas turbines present several merits over diesel engines, notably an enhanced power-to-weight ratio and superior power delivery.
Technical Paper

Optimal Use Cases for Electric and Hybrid Tactical Vehicles

2024-04-09
2024-01-2662
In alignment with the U.S. Army's Climate Strategy and the broader trend in automotive technology, there is a strategic shift towards electrification and hybridization of the vehicle fleet. While a major goal of this effort is to mitigate the carbon footprint of the U.S. Army's vehicle operations, this transition also presents an opportunity to harness advancements in automotive electrification. Among the key vehicles in focus are tactical wheeled vehicles, which provide military forces with versatile and rugged transportation solutions for various combat scenarios, ensuring mobility, protection, and adaptability on the battlefield. This study investigates the potential of electrified tactical wheeled vehicles by conducting a survey involving a diverse group of vehicle operators across various ranks within the U.S. Army.
Technical Paper

Modeling and Analysis of Fully Electric and Hydrogen-Powered Bradley Fighting Vehicles

2023-04-11
2023-01-0119
As the U.S. Army moves to electrify portions of its vehicle fleet, it is worth considering the heavier combat vehicles. However, the high power demand of these vehicles coupled with the relatively low energy density of modern batteries result in electric vehicles with limited range and functionality. Hydrogen-based fuel cells are an alternative to batteries that can provide many of the same environmental and logistical benefits associated with electrification. This study models the energy consumption for two variants of the M2A4 Bradley Fighting Vehicle (BFV). The first variant is powered by a hydrogen-based Proton Exchange Membrane Fuel Cell; the second variant is powered through lithium-ion batteries. These models account for vehicle weight, accelerative forces, drag, road grade, tractive losses, and ancillary equipment and are compared against a conventional M2A4 BFV.
Technical Paper

Analysis of Geo-Location Data to Determine Combat Vehicle Idling Times

2023-04-11
2023-01-0101
As the United States Army strives for electrification and hybridization of tactical and combat vehicles in alignment with its Climate Strategy, it is necessary to capture all aspects of the drive cycle. One key area for consideration is the amount of time that the vehicles spend idling. Indeed, military vehicles can idle for a considerable amount of time, especially given that soldiers must keep their vehicles running to power critical electronic subsystems. Current, standardized drive cycles do not fully capture the degree that military vehicles idle. This study begins to address this gap by analyzing geo-location data collected from the National Training Center (NTC) for several different tactical vehicles including the High Mobility Multipurpose Wheeled Vehicle (HMMWV), the Bradley Fighting Vehicle, and the Abrams Main Battle Tank. This paper details the extraction, cleaning, and analysis of the geo-location data.
Technical Paper

Hybridization of US Army Combat Vehicles

2022-03-29
2022-01-0371
As the global automotive market shifts towards electric vehicles, the United States Army must naturally consider this alternative for its combat vehicles. Indeed, electric vehicles offer numerous tactical advantages over traditional diesel engines, including higher torque at lower speeds and lower signature. Unfortunately, full electrification of most military vehicles is not feasible due to the weight of the requisite battery pack. However, the Army can take advantage of electric vehicles through hybrid power trains. Hybrid options allow for quiet, resilient, and powerful vehicles that are less constrained by battery technology. This study looks at the feasibility of hybrid power systems for military vehicles including the Infantry Squad Vehicle, the High Mobility Multipurpose Wheeled Vehicle, and the Joint Light Tactical Vehicle.
Technical Paper

Methods to Increase the Relevancy of the Octane Number Tests

2021-04-06
2021-01-0471
The Octane Number test was unveiled in 1928 with a lukewarm response from the oil and automotive industries. The test represented a noble attempt for capturing the antiknock performance of a fuel given the limited knowledge of knock at the time. The test compares the antiknock performance of a fuel in a test engine to a reference fuel. Though simplistic, the test is ingrained in society and has undergone only minor revision despite dramatic changes in engines and fuels. Many studies have discussed the inadequacies of the test, with recent ones questioning their relevancy. This paper provides an overview of these issues, focusing on how to make the tests relevant to modern engines and fuels. Three techniques are recommended for updating the tests. The first technique adjusts the definition for the antiknock index, which is the “Octane Number” displayed on the fuel pump.
Technical Paper

Determination of Efficiency Losses in Entry Ignition Engines

2021-04-06
2021-01-0441
In 2020, Cheeseman (SAE Paper 2020-01-1314) introduced Entry Ignition (EI) as a potential engine combustion process to rival traditional Spark Ignition (SI) and Compression Ignition (CI). The EI process premixes fuel with compressed air, which then enters a hot cylinder at top dead center, autoigniting upon entry. The original proposed concept for an engine separates the compression and expansion processes allowing for it to be modeled as a 2-stroke Brayton cycle. Theoretically, an EI engine allows for higher compression ratios than SI engines with less emissions than CI engines. However, the original EI engine analysis made several assumptions that merit further investigation. First, the original analysis did not look at the temperatures and pressures in the air/fuel mixing chamber to ensure that it does not autoignite prior to entering the cylinder. Second, the analysis did not account for the large amount of heat transfer associated with keeping half the end-gas in the cylinder.
Technical Paper

Design Parameters for Small Engines Based on Market Research

2018-09-10
2018-01-1717
Small internal combustion engines outperform batteries and fuel cells in regards to weight for a range of applications, including consumer products, marine vehicles, small manned ground vehicles, unmanned vehicles, and generators. The power ranges for these applications are typically between 1 kW and 10 kW. There are numerous technical challenges associated with engines producing power in this range resulting in low power density and high specific fuel consumption. As such, there is a large range of engine design solutions that are commercially available in this power range to overcome these technical challenges. A market survey was conducted of commercially available engines with power outputs less than 10 kW. The subsequent analysis highlights the trade-offs between power output, engine weight, and specific fuel consumption.
Technical Paper

Distribution of Knock Frequencies in Modern Engines Compared to Historical Data

2018-09-10
2018-01-1666
It is widely known that the rapid autoignition of end-gas will cause an engine cylinder to resonate, creating a knocking sound. These effects were quantified for a simple engine geometry in 1934 in a study where critical resonance frequencies were identified. That analysis, performed by Charles Draper, still forms the basis of most knock studies. However, the resonance frequencies are highly dependent on the engine geometry and the conditions inside the cylinder at autoignition. Since, engines and fuels operate at substantially different conditions than they did in 1934, it is expected that there should be a shift in knock frequencies. Experimental tests were run to collect knock data in an engine, representative of modern geometries, over a range of operating conditions for a number of different fuels. The operating conditions-intake air temperature, intake air pressure, and engine speed-were varied to identify shifts in the critical frequencies.
Journal Article

The Underlying Physics and Chemistry behind Fuel Sensitivity

2010-04-12
2010-01-0617
Recent studies have shown that for a given RON, fuels with a higher sensitivity (RON-MON) tend to have better antiknock performance at most knock-limited conditions in modern engines. The underlying chemistry behind fuel sensitivity was therefore investigated to understand why this trend occurs. Chemical kinetic models were used to study fuels of varying sensitivities; in particular their autoignition delay times and chemical intermediates were compared. As is well known, non-sensitive fuels tend to be paraffins, while the higher sensitivity fuels tend to be olefins, aromatics, diolefins, napthenes, and alcohols. A more exact relationship between sensitivity and the fuel's chemical structure was not found to be apparent. High sensitivity fuels can have vastly different chemical structures. The results showed that the autoignition delay time (τ) behaved differently at different temperatures. At temperatures below 775 K and above 900 K, τ has a strong temperature dependence.
Journal Article

The Shift in Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines Over the Last 70 Years

2009-11-02
2009-01-2622
Since the advent of the spark ignition engine, the maximum engine efficiency has been knock limited. Knock is a phenomena caused by the rapid autoignition of fuel/air mixture (endgas) ahead of the flame front. The propensity of a fuel to autoignite corresponds to its autoignition chemistry at the local endgas temperature and pressure. Since a fuel blend consists of many components, its autoignition chemistry is very complex. The octane index (OI) simplifies this complex autoignition chemistry by comparing a fuel to a Primary Reference Fuel (PRF), a binary blend of iso-octane and n-heptane. As more iso-octane is added into the blend, the PRF is less likely to autoignite. The OI of a fuel is defined as the volumetric percentage of iso-octane in the PRF blend that exhibits similar knocking characteristics at the same engine conditions.
Technical Paper

The Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines

2008-10-06
2008-01-2414
The Octane Index (OI) relates a fuel's knocking characteristics to a Primary Reference Fuel (PRF) that exhibits similar knocking characteristics at the same engine conditions. However, since the OI varies substantially with the engine operating conditions, it is typically measured at two standard conditions: the Research and Motor Octane Number (RON and MON) tests. These tests are intended to bracket the knock-limited operating range, and the OI is taken to be a weighted average of RON and MON: OI = K MON + (1-K) RON where K is the weighing factor. When the tests were established, K was approximately 0.5. However, recent tests with modern engines have found that K is now negative, indicating that the RON and MON tests no longer bracket the knock-limited operating conditions. Experiments were performed to measure the OI of different fuels in a modern engine to better understand the role of fuel sensitivity (RON-MON) on knock limits.
Technical Paper

Phenomena that Determine Knock Onset in Spark-Ignition Engines

2007-01-23
2007-01-0007
Experiments were carried out to collect in-cylinder pressure data and microphone signals from a single-cylinder test engine using spark timingsbefore, at, and after knock onset for toluene reference fuels. The objective was to gain insight into the phenomena that determine knock onset, detected by an external microphone. In particular, the study examines how the end-gas autoignition process changes as the engine's spark timing is advanced through the borderline knock limit into the engine's knocking regime. Fast Fourier transforms (FFT) and bandpass filtering techniques were used to process the recorded cylinder pressure data to determine knock intensities for each cycle. Two characteristic pressure oscillation frequencies were detected: a peak just above 6 kHz and a range of peaks in the 15-22 kHz range. The microphone data shows that the audible knock signal has the same 6 kHz peak.
X