Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Identification of Low Vibration Damping Areas on Automotive Door Panel and Improvement Using Natural Fibers

2024-04-09
2024-01-2338
Vibrations constitute a pivotal factor affecting passenger comfort and overall vehicle performance in both Conventional Internal Combustion Engine (ICE) vehicles and Electric Vehicles (EVs). These vibrations emanate from various sources, including vehicle design and construction, road conditions, and driving patterns, thereby leading to passenger discomfort and fatigue. In the pursuit of mitigating these issues, natural fibers, known for their exceptional damping properties, have emerged as innovative materials for integration into the automotive industry. Notably, these natural fiber-based materials offer a cost-effective alternative to traditional materials for vibration reduction. This research focuses on evaluating natural fibers mainly hemp, jute and cotton fibers for their damping characteristics when applied to a steel plate commonly used in the automotive sector.
Technical Paper

Exploring Natural Frequency and Damping in Coir-Rubber Polymer Composites for Vibration Control in Mobility Vehicles

2024-04-09
2024-01-2357
This study delves into the dynamic properties of hybrid composite materials, specifically focusing on the natural frequency and modal damping characteristics of Coir Fiber-Rubber Particles Reinforced Polymer Composites (CRP). Comprehensive experimental investigations were conducted utilizing an FFT analyzer. Initial experiments involved the preparation of specimens with varying rubber content, ranging from 2% to 5%. Coir, known for its cellulose-rich composition, was selected due to its innate damping properties, making it highly effective in mitigating vibrations. The primary motivation behind this research is to provide cost-effective solutions for reducing vibrations in mobility vehicles, addressing challenges associated with passenger comfort, durability, and overall performance. The study yielded promising results, with CRP exhibiting substantial reductions in vibrations.
Technical Paper

Friction and Wear Studies on Jute Fiber and SS 304 Wire Mesh Reinforced Hybrid Polymer Composites for Automotive Applications

2023-04-11
2023-01-0727
Automotive industry is looking for high strength and durable lightweight material with resistance to wear and friction. To meet this requirement, a new hybrid polymer composite material has been developed using reinforcement as SS 304 wire mesh and jute fibre. Present paper explores the experimental findings of wear performance of hybrid polymer composite under dry condition. Four different laminates with configurations JJSJJSJJ, (JJSJJSJJ)450, GGSGGSGG and GJSJJSJG along with their virgin counterpart were developed by hand layup technique supported by compression moulding. These laminates were tested as per the ASTM standards to investigate its performance for friction and wear using pin on disc machine with steel as a counterpart. Testing parameters were sliding distance, applied load and sliding speed. Experimental results showed that, applied load have major influence on the friction and wear performance of developed hybrid composites.
Technical Paper

Natural Fiber Base Composite Material Solution for Vibration Damping of ICE and Next-Generation Vehicle

2023-04-11
2023-01-0728
Vibration control plays a critical role in conventional as well as next-generation vehicles. Construction of the vehicle, road conditions, and driving patterns are the major sources of the vibrations that cause discomfort to the passengers in the vehicle. Composite material is being looked at as an alternative material in the automotive sector due to its higher specific strength and good damping properties. In this research, the test specimen of steel plate used in automotive has been considered. The damping vibration test has been carried out on the test specimen by using the FFT analyzer to evaluate the natural frequency and damping. Thereafter, the hybrid composite material is developed with the natural fibers as reinforcement with steel plate to reduce the vibrations. The test specimens with different layers of damping materials have been prepared for this research. Jute, hemp, banana, and flax are used for the preparation of different composite materials.
Technical Paper

Vehicle Dynamics Analysis and Optimization of Electric All-Terrain Vehicle

2022-03-29
2022-01-0913
A Vehicle Dynamics Analysis of an electric All-Terrain Vehicle (ATV) is conducted and presented in the following paper. Vehicle performance is analyzed, shortcomings are identified and solutions to optimize the vehicle design are implemented. These optimizations are tested and results are compared with the pre-existing models and validated by conducting physical trials on the actual model. The virtual tests are carried out using Multi-Body Dynamics (MBD) tool- MSC ADAMS. The results obtained from the tests have been put forth in theoretical as well as graphical manner to get a clearer view. This research involved a thorough study of Lateral and Longitudinal Dynamics of the ATV. Trends in dynamic parameters like the ride quality, pitch response, roll stability, yaw response, camber gain and other important parameters of the vehicle have been studied and its correlation with the feedback obtained from the driver is established.
Technical Paper

Effect of Strain Rate on Mechanical Responses of Jute-Polyester Composites

2017-03-28
2017-01-1467
There has been a keen interest in recent times on implementation of lightweight materials in vehicles to bring down the unladen weight of a vehicle for enhancing fuel efficiency. Fiber-reinforced composites comprise a class of such materials. As sustainability is also a preoccupation of current product development engineers including vehicle designers, bio-composites based on natural fibers are receiving a special attention. Keeping these motivations of lower effective density, environment friendliness and occupational safety in mind, woven jute fabric based composites have been recently studied as potential alternatives to glass fiber composites for structural applications in automobiles. In the past, mechanical characterization of jute-polyester composites were restricted to obtaining their stress-strain behaviors under quasi-static conditions.
Technical Paper

Performance of Lightweight Materials for Vehicle Interior Trim Subject to Monotonic Loading and Low Velocity Impact

2015-04-14
2015-01-0717
The usage of lightweight materials such as plastics and their derivatives continues to increase in automobiles driven by the urgency for weight reduction. For structural performance, body components such as A-pillar or B-pillar trim, instrument panel, etc. have to meet various requirements including resistance to penetration and energy absorption capability under impact indentation. A range of plain and reinforced thermoplastics and thermosetting plastics has been considered in the present study in the form of plates which are subject to low velocity perforation in a drop-weight impact testing set-up with a rigid cylindrical indenter fitted to a tup. The tested plates are made of polypropylene (PP), nanoclay-reinforced PP of various percentages of nanoclay content, wood-PP composites of different volume fractions of wood fiber, a jute-polyester composite, and a hybrid jute-polyester reinforced with steel.
Technical Paper

A Study on Impact Perforation Resistance of Jute-Polyester Composite Laminates

2014-04-01
2014-01-1055
Natural fiber-based composites such as jute-polyester composites have the potential to be more cost-effective and environment-friendly substitutes for glass fiber-reinforced composites which are commonly found in many applications. In an earlier study (Mache and Deb [1]), jute-polyester composite tubes of circular and square cross-sections were shown to perform competitively under axial impact loading conditions when compared to similar components made of bidirectional E-glass fiber mats and thermo-setting polyester resin. For jute-reinforced plastic panels to be feasible solutions for automotive interior trim panels, laminates made of such materials should have adequate perforation resistance. In the current study, a systematic characterization of jute-polyester and glass-polyester composite laminates made by compression molding is at first carried out under quasi-static tensile, compressive and flexural loading conditions.
Technical Paper

A Comparative Study on the Axial Impact Performance of Jute and Glass Fiber-Based Composite Tubes

2013-04-08
2013-01-1178
This paper focuses on the energy absorbing characteristics and progressive deformation behavior of woven jute-polyester composite cylindrical tubes subjected to an axial impact load. In this study, the impact energy absorption characteristics and crushing mechanisms of composite tubes of different thicknesses and number of plies are investigated. To start with, coupon specimens are made from laminates of jute and glass fiber-based polyester composites. These are then tested in a UTM for mechanical characterization of the composites under tensile and compressive loading conditions. Experiments are then conducted in a drop-weight impact testing device to investigate crash performance characteristics such as mean crush load, absorbed energy and specific energy absorption (SEA) of woven jute-polyester composite cylindrical tubes.
Technical Paper

Use of an Electromagnetic Damper for a Road Vehicle Suspension System

2009-05-19
2009-01-2144
In this paper, the use of an electromagnetic damper has been demonstrated for control of vibration of a typical road vehicle suspension system. A quarter car model of a conventional passive suspension system has been modified by including an electromagnetic damper. The theoretical frequency response characteristics of this model have been determined and have been correlated with those obtained by the experimental analysis. For this purpose, a laboratory type 2DOF quarter car model with an electromagnetic damper has been fabricated. The electromagnetic damper used in the experimental analysis has been developed by using a combination of an electromagnet and the permanent magnet keeping an air gap between them. Experimental frequency response characteristics have been obtained using an experimental test set up developed for the same
Technical Paper

Theoretical and Experimental Dynamic Response Analysis of a Road Vehicle Suspension System using an Electromagnetic Damper

2007-10-30
2007-01-4271
In this paper, the use of an electromagnetic damper has been demonstrated for control of vibration of a typical road vehicle suspension system. For this purpose, a quarter car model of a conventional passive suspension system has been modified by including an electromagnetic damper. The theoretical frequency response characteristics of this model have been determined and have been correlated with those obtained by the experimental analysis. For this purpose, a laboratory type 2DOF quarter car model with an electromagnetic damper has been fabricated. The electromagnetic damper used in the experimental analysis has been developed by using a combination of an electromagnet and the permanent magnet keeping an air gap between them. Experimental frequency response characteristics have been obtained using an experimental test set up developed for the same.
X