Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Technical Paper

Development of Next Generation Fuel Cell Bus: Investigation of Configuration Impact and Control Strategy Development

2022-03-29
2022-01-0691
The emergence of fuel cell powertrains has opened up new pathways to net-zero greenhouse gas emissions across a number of sectors, including public transport. However, while these technologies are gaining momentum, they are mostly still in their infancy with a range of fundamental challenges which still need to be addressed. The typical configuration deployed in bus applications requires integration with other fast-response power sources, e.g., battery and/or ultra-capacitor, to effectively manage power delivery. However, implementation of such hybrid energy storage systems (ESSs) complicates the design and control of the vehicle powertrains. In this work, a concept fuel cell bus vehicle powertrain configuration has been constructed first using Matlab/Simulink which can be used to explore the impact of various ESS hybridization strategies, and their effectiveness in power management.
Technical Paper

Determining the Distribution of Battery Electric and Fuel Cell Electric Buses in a Metropolitan Public Transport Network

2022-03-29
2022-01-0675
The need to decrease greenhouse gases emissions in the transport sector has resulted in the requirement for zero emission technologies in city centre bus fleets. Currently, battery electric buses are the most common choice, with both single deck and double deck vehicles in regular use. However, long-term operational capabilities are still largely unknown and unreported. Hydrogen fuel cell electric buses are an emerging zero emission technology that have the potential to complement a battery electric bus fleet where the duty cycle is challenging for current battery electric configurations. This paper compares the difference in energy consumption, for a given chassis configuration, passenger load, and heating requirement, of generic battery electric and hydrogen fuel cell electric buses operating in a typical UK city environment.
Technical Paper

Optimal Control Strategy for the Next Generation Range Extended Electric Bus

2020-04-14
2020-01-0844
Electric and Hybrid-Electric buses have become a major vehicle platform for demonstrating the advantages and capabilities of electrification in heavy duty vehicles. This type of vehicle can be powered from several different sources that each have several unique operating characteristics and performance requirements that necessitate novel solutions. In this paper, a novel optimal control strategy based on the next generation range-extended electric bus (REEB) has been developed. Control strategies play an essential role in realizing the full potential of electric buses and through careful implementation can increase their effectiveness at displacing conventional internal-combustion powered buses and thus, reducing global fuel consumption and emissions. Initially, a control-oriented powertrain model was developed in Matlab/Simulink.
Technical Paper

Lap Time Simulation Tool for the Development of an Electric Formula Student Car

2019-04-02
2019-01-0163
This work details the development of a lap time simulation (LTS) tool for use by Queen’s University Belfast in the Formula Student UK competition. The tool provides an adaptable, user-friendly virtual test environment for the development of the team’s first electric vehicle. A vehicle model was created within Simulink, and a series of events simulated to generate the performance envelope of the car in the form of maximum combined lateral/longitudinal accelerations against velocity (ggv diagram). A four-wheeled vehicle including load transfer was modelled, capturing shifts in traction between each tire, which can influence performance in vehicles where the total tractive power is split between individual wheel motors. The acceleration limits in the ggv diagram were used to simulate the acceleration and endurance events at Formula Student. These events were simulated using a MATLAB code considering a point mass, quasi-steady state model with a perfect driver.
Technical Paper

Modelling and Control of a Hybrid Urban Bus

2019-04-02
2019-01-0354
This paper describes the development and on-vehicle validation testing of next generation parallel hybrid electric powertrain technology for use in urban buses. A forward-facing MATLAB/Simulink powertrain model was used to develop a rule-based deterministic control system for a post-transmission parallel hybrid urban bus. The control strategy targeted areas where conventional powertrains are typically less efficient, focused on improving fuel economy and emissions without boosting vehicle performance. Stored electrical energy is deployed to assist the IC engine system leading to an overall reduction in fuel consumption while maintaining vehicle performance at a level comparable with baseline conventional IC engine operation.
Journal Article

Design of an Electric Drive Transmission for a Formula Student Race Car

2019-04-02
2019-01-1295
This paper presents a methodology used to configure an electric drive system for a Formula Student car and the detailed design of a transmission for in-hub motor placement. Various options for the size, number and placement of electric motors were considered and a systematic process was undertaken to determine the optimum configuration and type of motor required. The final configuration selected had four 38 kW in-hub motors connected through a 14.8:1 reduction transmission to 10” wheels. Preliminary design of the transmission indicated that the overall gear ratio would be best achieved with a two-stage reduction, and in this work an offset primary spur stage coupled to a planetary second stage was chosen. Detailed design and validation of the transmission was conducted in Ricardo SABR and GEAR, using a duty cycle derived from an existing internal combustion Formula Student car.
Technical Paper

Camshaft Design for an Inlet-Restricted FSAE Engine

2008-09-09
2008-32-0073
Restricting the flow rate of air to the intake manifold is a convenient and popular method used by several motor sport disciplines to regulate engine performance. This principle is applied in the Formula SAE and Formula Student competitions, the rules of which stipulate that all the air entering the engine must pass though a 20mm diameter orifice. The restriction acts as a partially closed throttle which generates a vacuum in the inlet plenum. During the valve overlap period of the cycle, which may be as much as 100 degrees crank angle in the motorcycle engines used by most FSAE competitors, this vacuum causes reverse flow of exhaust gas into the intake runners. This, in turn, reduces the amount of fresh air entering the cylinder during the subsequent intake stroke and therefore reduces the torque produced. This effect is particularly noticeable at medium engine speeds when the time available for reverse flow is greater than at the peak torque speed.
Technical Paper

Experimental Validation of an FSAE Engine Model

2008-09-09
2008-32-0079
The objective of the study outlined in this paper was to optimize the performance of a 600cc four-cylinder FSAE engine through the use of one-dimensional simulation. The first step in this process was to validate a baseline model of the engine in its stock, unrestricted format. This was achieved through the use of crank-angle-resolved and cycle-averaged test data. The in-cylinder pressure history was also analyzed to provide combustion and friction data specific to this engine. This process significantly improved the correlation of the model with the test data and it was subsequently used to simulate and optimize the configuration of the engine planned for use in the 2008 FSAE competition. The process of validating the model, together with the specification of the subsequent optimized engine, are presented.
Technical Paper

Development of Optimization Techniques for the Design of an Internal Combustion Engine Airbox

2006-11-13
2006-32-0114
The geometrical design of the airbox for an internal combustion engine has a significant effect on the pressure loss in the entire inlet tract. Due to the location of the airbox, its size and shape is usually limited as a result of the proximity to other under-bonnet features. The shape is also limited by manufacturing, assembly and NVH considerations. The complexity of the unsteady flow through the airbox and the constraints placed upon it by the available volume in the under-bonnet area make this a challenging design task. This paper reviews the current thinking on methods used to optimize Computational Fluids Dynamics (CFD) problems and how this would apply to the optimization of an airbox for an internal combustion engine. The paper then goes on to detail the findings of the initial validation work on the CFD method for predicting the pressure loss through an airbox. An optimization case study is then presented based on one of the models used for the validation.
X