Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modification of Strain Distribution on Contact Surface of Shoe to Reduce Low Frequency Squeals for Brake Disc with Small Holes

2010-10-10
2010-01-1715
The purpose of this study is to propose an effective model to estimate the excitation force accompanied with stick-slip between shoe and disc, considering the strain distribution on contact surface of the shoe, and then to propose an effective concept to design the brake which reduced the brake squeal under practical use. In order to investigate the influence of configuration of the hole, three types of discs were prepared in which the size of holes was different. The SPL (Sound Pressure Level) and the frequency of squeal for three types of discs were measured when the brake squeal was observed at conditions of low sliding speed. The change of stability of the brake shoe passing on hole was analyzed by 2-D simplified brake system model.
Technical Paper

Study on Low Speed Judder of Wave Type Brake Discs for Motorcycles

2006-11-13
2006-32-0026
This study discussed the mechanism of the low speed judder for wave type brake disc developed newly for recent motorcycles. Wavy disc was examined to investigate the effect of wave configurations on the BTV (Brake Torque Variation) behavior. Torque amplitude in braking was compared with respect to the revolution order which represented the multiple number of the number of revolutions. To explain the mechanism at the mode showing largest BTV, the elastic deformation of the pad was analyzed by finite element method concerning geometrical nonlinearity with commercial code. This study found that most crucial BTV appeared on low speed judder was observed at the 3 rd peaks on the revolution order. Test data showed that this crucial BTV was related with the number of waves at the disc periphery, and caused by the indentation of the pad into notched part at disc periphery.
X