Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Evaluation of Battery Power Losses During the LCA Use Phase of Electric Vehicles: An Experimental Analysis of Different Li-Ion Battery Chemistries

2023-08-28
2023-24-0155
Vehicle electrification is one of the most important emerging trends in the transportation sector and a necessary step towards the reduction of polluting substances and greenhouse gas (GHG) emissions. However, electric vehicles still present some environmental criticalities, such as indirect emissions related to the electricity used for charging the traction battery, which depends on the considered national electricity generation mix. The leading approach for quantifying the potential environmental impacts is the Life Cycle Assessment (LCA), a standardized methodology that takes into account the whole life cycle of a product, including production, use phase, and end-of-life.
Technical Paper

Environmental and Health Impact of Electric and Hydrogen Light Vehicles: The Case of an Italian Small City

2019-10-07
2019-24-0250
As the emission regulations get more and more stringent in the different fields of energy and environmental systems, the electric and fuel cell electric vehicles have attracted growing attention by automakers, governments, and customers. Research and development efforts have been focused on devising novel concepts, low-cost systems, and reliable electric/fuel cell powertrain. In fact, electric and fuel cell vehicles coupled with low-carbon electricity sources offer the potential for reducing greenhouse gas emissions and exposure to tailpipe emissions from personal transportation. In particular, Pedal Assisted Bicycles popularity is rising in urban areas due to their low energy consumption and environmental impact. In fact, when electrically moved, they are zero emission vehicles with very low noise emissions, as well.
Technical Paper

Multidimensional Modeling of SCR Systems via the Lattice Boltzmann Method

2019-09-09
2019-24-0048
In this paper, we deploy a novel, multidimensional approach to simulate SCR reactors across physical scales. For the first time, a full 3D Lattice Boltzmann (LB) solver is developed, able to accurately capture the fluid dynamic phenomena taking place inside SCR reactors, as well as the catalytic conversion of NOx. The influence of engine load on exhaust gas mass flow rate and catalytic converter activity is taken into account. The proposed approach is computationally light and the results prove the reliability and versatility of the LB Method for the simulation of the complex phenomena that take place inside the after-treatment devices.
Technical Paper

A Zonal-LES Study of Steady and Reciprocating Engine-Like Flows Using a Modified Two-Equation DES Turbulence Model

2017-09-04
2017-24-0030
A two-equation Zonal-DES (ZDES) approach has been recently proposed by the authors as a suitable hybrid URANS/LES turbulence modeling alternative for Internal Combustion Engine flows. This approach is conceptually simple, as it is all based on a single URANS-like framework and the user is only required to explicitly mark which parts of the domain will be simulated in URANS, DES or LES mode. The ZDES rationale was initially developed for external aerodynamics applications, where the flow is statistically steady and the transition between zones of different types usually happens in the URANS-to-DES or URANS-to-LES direction. The same “one-way” transition process has been found to be fairly efficient also in steady-state internal flows with engine-like characteristics, such as abrupt expansions or intake ports with fixed valve position.
Technical Paper

Direct Numerical Simulation of SCR Reactors through Kinetic Approach

2016-04-05
2016-01-0963
The selective catalytic reduction (SCR) is perhaps the most efficient process to reduce nitrogen oxides (NOx) emissions in engine exhaust gas. Research efforts are currently devoted to realizing and tuning SCR-reactors for automotive applications to meet the severe future emission standards, such as the European “Euro VI”, in terms of NOx and particulate matter produced by vehicles. In this paper, we apply for the first time the Lattice Boltzmann Method (LBM) as a computational tool to study the performance of a SCR reactor. LBM has been recently adopted for the study of complex phenomena of technical interest, and it is characterized by a detailed reproduction of both the porous structure of SCR reactor and the fluid-dynamic and chemical phenomena that take place in it. The aim of our model is to predict the behavior and performances of SCR reactor by accounting for the physical and chemical interactions between exhaust gas flow and the reactor.
Journal Article

Direct Numerical Simulation of Flow Induced Cavitation in Orifices

2013-09-08
2013-24-0005
In this paper, a multiphase Lattice Boltzmann approach is adopted to directly simulate flow conditions that lead to the inception of cavitation in an orifice. Different values of fluid surface tension are considered, which play a dramatic role in the evolution of vapour cavity, as well as different inlet velocities at the computational domain boundary. The results of the flow simulations in terms of density and velocity magnitude fields are examined, with special focus on the components of the stress tensor inside the cavitating region: a comparison with cavitation inception criteria known form literature is proposed, highlighting the good agreement between our direct numerical simulations and theoretical predictions.
Technical Paper

Lattice Boltzmann Simulation of a Cavitating Diesel Injector Nozzle

2011-09-11
2011-24-0008
The onset of cavitating conditions inside the nozzle of diesel injectors is known to play a major role on spray characteristics, especially on jet penetration and break-up. In this work, for the first time a Direct Numerical Simulation (DNS) based on the Lattice Boltzmann Method (LBM) is applied to study the fluid dynamic field inside the nozzle of a cavitating diesel injector. The formation of the cavitating region is determined via a multi-phase approach based on the Shan-Chen Equation of State and its most recent enhancements. The evolution of cavitation bubbles is followed and the characteristic numbers, i.e., Cavitation Number (CN) and discharge coefficient (Cd) are evaluated. The results obtained by the LBM simulation are compared to both numerical and experimental data present in literature.
Journal Article

Lattice Boltzmann Modeling of Diesel Spray Formation and Break-Up

2010-04-12
2010-01-1130
Spray formation and break-up are crucial phenomena for mixture formation inside diesel engines, both for combustion control and pollutant formation. Since the emission restrictions have become more and more severe in the last years, many studies have been conducted in order to improve diesel injection. Numerical simulations have proven to be reliable in producing results in a faster and cheaper way than experimental measures. The recent great progresses in computer science, then, have allowed to reach great accuracy in the simulations. In this work, a novel methodology based on Boltzmanns Kinetic Theory is applied to diesel injection. Lattice Boltzmann BGK (LBGK) provides and alternative method for solving fluid-dynamic problems and allows even superior accuracy as compared to conventional CFD. The multiphase approach used in this paper to study spray formation and primary is based on the works by Shan and Chen and their successive modifications.
Technical Paper

Soot Morphology Effects on DPF Performance

2009-04-20
2009-01-1279
This paper presents a lumped parameter (LP) model to compute diesel soot morphology, in terms of radii of gyration and fractal diameters, starting from the engine operating conditions. The global soot production inside the combustion chamber is evaluated, too. Such a model represents an enhancement of a previously developed LP approach in which the loading and regeneration processes inside a Diesel Particulate Filter (DPF) are investigated. The performance of the DPF during loading is evaluated according to soot layer thickness and pressure drop; the characteristics of soot morphology and particulate deposit are accounted for during the regeneration. Results are presented and validated by means of comparison to those obtained by experimental measures and 3D CFD simulations.
Technical Paper

DPF Soot Loading and Regeneration:A Lumped Parameter Approach

2008-04-14
2008-01-0441
Diesel particulate filters are well known for their efficiency and reliability in trapping particulate matter out of diesel engines. In the last years, many efforts have been done to improve their performances, leading to the employment of new materials and architectures, as well as sophisticated regeneration and management strategies. A lumped parameter model has been developed by the authors able to ensure good accuracy and fast processing for DPF control applications. In this paper, the attention is at first addressed towards the loading process; the evolution with time of pressure drop inside the filter structure is computed and basing on the engine operative condition, a parametrization of the deposited soot layer profile is proposed, in which the effect of the flow distribution at the cross section of the filter is accounted for. The regeneration process is then investigated and temperature profile inside the filter channel is analyzed.
Technical Paper

Influence of Soot Profile on Overheating During Regeneration

2007-04-16
2007-01-1139
Usually, the activation of DPF regeneration strategies is based on the estimation of the total particulate mass collected in the filter by means of the backpressure measure; no information concerning soot deposition profile on porous media is considered. In this paper, a numerical procedure is used to investigate the influence of soot profile on overheating during the regeneration process inside a commercial Diesel Particulate Filter. At first, the soot deposition profile, identified by a low number of parameters, is computed basing on the engine operative conditions. Then, the regeneration process is simulated. In this way, not only the amount of the total accumulated mass is taken into account, but the role of the shape of soot profile is accounted for. This allows to evaluate the correlation between the shape of collected particles layer and possible local overheating phenomena, which are very important to avoid critical thermal-structural stresses.
X