Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Development of a Finite Element Model of the Flex-PLI-GTR

2012-04-16
2012-01-0551
Evaluation of pedestrian leg protection performance using the Flex-PLI-GTR (Flexible Pedestrian Legform Impactor Global Technical Regulation) impactor is initiated in JNCAP in 2011. Therefore, a finite element (FE) model of Flex-PLI-GTR is needed for use in digital car development in order to satisfy pedestrian leg protection performance requirements. This paper describes the FE model of Flex-PLI-GTR that has been developed to meet this need. There are three important features of this FE model for obtaining sufficient simulation accuracy. First, the shapes of all Flex-PLI-GTR structures were modeled in detail. Shape information of the inner structures was obtained by computerized tomography scanning and shape information of the inner structures of the outer skin was obtained by laser measurement. Furthermore, the shape of the wrapped skin was incorporated into the FE model based on a wrapping simulation.
Technical Paper

Numerical Simulation of Out-of-Position Front Passenger Injuries in Frontal Crashes Using an Accurate Finite Element Model of the Cockpit Module

2012-04-16
2012-01-0552
While airbags are effective safety devices for reducing occupant injury level, front Out-of-Position (OOP) passengers can be injured by airbag deployment, for example, when a passenger's head is on the instrument panel surface at the time of the collision. Consequently, FMVSS 208 prescribes In-Position and OOP occupant safety performance, and vehicle manufacturers are continuing to develop optimal restraint systems for reducing injuries under both In-Position and OOP conditions. In this study, a numerical simulation method for OOP front passenger injuries in frontal crashes is presented by using accurate finite element (FE) models of the airbag and the cockpit module. The main characteristics of the airbag model are: (i) the Finite Point Method is employed to simulate the flow of gas; (ii) the initial airbag shape is represented by a folding model; (iii) nonlinear anisotropic material properties of the airbag fabric are identified considering the fiber directions and hysteresis.
Technical Paper

An Application of Cluster Analysis to Dummy Injury Readings in a Frontal Crash

2012-04-16
2012-01-0556
Public concern about the crashworthiness of vehicles has been continuously rising in recent years. Crashworthiness is evaluated under various crash configurations, including frontal collisions, in regulatory testing and in New Car Assessment Programs. Accordingly, vehicle manufacturers must deploy sophisticated product development strategies and redouble their engineering efforts in order to develop vehicles that satisfy the specified requirements for crashworthiness. Computer simulation is one effective approach to resolving this issue in that it provides a valuable tool for conducting multiple parameter studies and iterations in a short period of time. However, it is no easy task for CAE engineers to analyze the large volumes of calculation results obtained in frontal crash simulations and to understand the phenomena involved.
Technical Paper

New Design Support Approach CAP (Computer Aided Principle) and an Application to Structural Design for Vehicle Crash Safety

2007-08-05
2007-01-3718
The authors have proposed a new method to identify the important information which links to the basic principle of the design's physical behavior by using CAE technology, and this method was named as CAP (Computer-Aided Principle).This method can help the engineers to grasp the basic physical characteristic that governs the first-order behavior. In this study, the authors applied CAP to the simulations of the design of frontal crash phenomena, which are difficult to understand because of the problem of strong nonlinearity, and explored the possibilities for using CAP. The correlative physical parameters thus obtained can help designers to understand the essence of the phenomena involved.
Technical Paper

An Application of CAP (Computer-Aided Principle) to Structural Design for Vehicle Crash Safety

2007-04-16
2007-01-0882
The Computer-Aided Principle (CAP) is applied in this study as an effective approach to the crashworthiness design of the vehicle front-end structure. With this method, correlative parameters are extracted in a parametric study by using a cluster analysis. The results can help engineers to understand the fundamental mechanisms of structural phenomena. A simulation example of an offset frontal crash against a deformable barrier (ODB) is presented to show the effectiveness of the proposed method.
X