Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

2011-08-30
2011-01-1818
The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
Technical Paper

Analysis of the Deterioration of Nylon-66 Immersed in GTL Diesel Fuel Part 2. Analysis of Model Fuel and Nylon Before and After Immersion

2006-10-16
2006-01-3327
In a previous paper (Part 1 of this series), nylon-66 specimens were immersed in two GTL diesel fuels (GTL-A and GTL-B) and then subjected to tensile testing. The tensile test results revealed that the elongation of the specimen immersed in GTL-A was dramatically reduced. The GTL diesel fuels and nylon specimens before and after immersion were analyzed to determine the cause of the decline in elongation. It was found that the poor elongation was caused by penetration and oxidation of low molecular-weight paraffins and that the ease of penetration and oxidation of paraffin depended on the structure of paraffin. In this paper, the low molecular-weight paraffins detected in GTL-A were mixed to produce model fuels. Then, pieces of nylon cut from the tensile test specimen, were immersed in the model fuels. In addition, partial oxidation products of the paraffin (alcohol, aldehyde or ketone and acid) were used in immersion tests of the nylon pieces.
X