Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Forming Limit Measurement Using a Multi-Sensor Digital Image Correlation System

2013-04-08
2013-01-1423
A multi-sensor Digital Image Correlation (DIC) system is employed to measure the deformation of metal specimens during tensile tests. The multi-sensor DIC system is capable of providing high quality contour and deformation data of a 3D object. Methodology and advantages of the multi-sensor DIC system is introduced. Tests have been done on steel and aluminum specimens to prove the performance of the system. With the help of the multi-sensor DIC system, we proposed our approaches to determine the forming limit based on shape change around the necking area instead of calculate the FLD based on the in-plane strains. With the employed system, all measurements are done post-deformation, no testing controlling mechanism, such as load force control or touching control, is required. The extracted data is analyzed and the result shows a possibility that we may be able to improve current technique for Forming Limit Diagram (FLD) measurement.
Technical Paper

Analysis of Methods for Determining Sheared Edge Formability

2011-04-12
2011-01-1062
Imposing tensile stress on an edge of a sheet metal blank is a common condition in many sheet metal forming operations, making edge formability a very important factor to consider. Because edge formability varies greatly among different materials, cutting methods (and their control parameters), it is very important to have access to an experimental technique that would allow for quick and reliable evaluation of edge formability for a given case. In this paper, two existing techniques are compared: the hole expansion test and the tensile test. It is shown that the hole expansion test might not be adequate for many cases, and is prone to overestimating the limiting strain, because the burr on the sheared edge is typically smaller than what is observed in production. The tensile test represents an effective alternative to the hole expansion test. Advantages and disadvantages of each case are discussed.
Journal Article

Analysis of Trimming Processes for Advanced High Strength Steels

2009-04-20
2009-01-1175
Presented are analytical and experimental results for both the conventional trimming process and a recently developed robust trimming process, which involves dulling the upper trimming tool and providing elastic offal support. The robust process, which has strong potential to lower the requirements for the accuracy of trim die alignment, is analyzed. Material flow of the trimming process is modeled numerically using the commercially available LS-Dyna finite element program and an in-house finite element program, called Solid 2D. An experimental technique, which provides plane strain material deformation data as a function of hydrostatic pressure has been developed. Experimental results from the plane strain FLD test and a single interrupted trimming test were obtained in order to find agreement between analytical and experimental results. Analysis of the mechanisms of blank separation in conventional trimming and trimming with an elastic scrap support is also provided.
Technical Paper

Measurement of Strain Localization in a Tensile Test Using Full Field Optical Technique - Digital Speckle Correlation

2008-04-14
2008-01-0682
This paper presents digital speckle correlation technique to study the strain at the macroscopic level during a tensile test. Digital Speckle Correlation (DSC) is a full-filed and non-contacting optical technique. It offers a significant advantage over conventional techniques such as extensometer for tensile test of materials. It has a high sensitivity and accuracy and thus helps in determining the true mechanical properties of the material for a better understanding of component behavior. From the measured data, we see that the accuracy of the system is sufficient enough to track the initiation and development of strain concentration in the necking region by computing the strain contours in full field environment. True Strain-stress data is presented with a comparison of the measured data with the traditional method. Initiation of the necking region has been identified using the full field data measured.
Technical Paper

Sensitivity Analysis of a Bolt-Together Vehicle Chassis

2006-04-03
2006-01-1251
This study involves the investigation of the sensitivity of the torsional stiffness of a bolt-together heavy truck chassis to variations in tight/loose conditions for various combinations of individual bolts or groups of bolts. The behavior of the chassis, which features several hundred threaded fasteners as the primary means of connecting the cross members to the longitudinal beams, is studied using the Hierarchical Evolutionary Engineering Design System (HEEDS) in connection with the finite element program (ABAQUS) for performing a multiple-run analysis. A novel analysis approach involving a systematic segregation of the bolts is introduced. First, the bolts that are used for connecting the components of the chassis are divided into various sets. Each set represents a number of individual bolts in each joint between the longitudinal beams and the various cross members.
Technical Paper

Offset Algorithm for Compound Angle Machining of Cummins Cylinder Heads

2005-04-11
2005-01-0506
Proper valve angles and concentric valve seats are critical to performance of an engine. If the valve seat were not right, the valve is not going to seat properly resulting in reduced power output. Although the performance of CNC machines is accurate, unavoidable human errors at the part loading position have serious repercussions on engine performance. A solution algorithm presented in this paper employs the principles of inverse kinematics wherein a faulty compound-hole angle axis in space caused by the translational and rotational errors at the part loading position is identified with an imaginary true axis in space by enforcing identity through a modified machine axes.
X