Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Impacts of Coordinating the Colors of Flashing Warning Lights and Vehicle Markings on Driver Perception

2023-04-11
2023-01-0839
Flashing lights on emergency and maintenance vehicles should be critical components to alerting, informing and managing drivers as they navigate around work zones, vehicle accidents and other roadway emergency incident scenes. These vehicles often also use distinctive colors and markings to identify the type of vehicle and potentially provide drivers with information about the nature of the incident they are approaching. In order to begin to understand how these elements (flashing lights and vehicle/marking colors) contribute to perception, a study was carried out in which participants viewed pairs of roadway scenes using scale model vehicles and lights adjusted to produce similar apparent intensities as full-scale lighting systems. In some cases the colors of the flashing lights were coordinated with those of the vehicle and its reflective markings, and in other cases the colors were not coordinated.
Technical Paper

Influence of Intensity, Duration and Spectral Characteristics on Glare Recovery for Peripheral Visibility

2020-04-14
2020-01-0632
Vehicle forward lighting can use a multiplicity of light sources each varying in their spectral characteristics. Present standards for low beam headlight performance also allow variability in the peak intensities that drivers can be exposed to, as well as the durations of those exposures. Previous research has led to mixed results regarding whether the spectral distribution of a headlight source influences the length of time the visual system needs to recover the ability to see objects that might present hazards along the roadway. One recent study showed that the integrated light dose (intensity × duration) but not the spectral distribution impacted recovery times for targets presented in a constant, known location, where they would be viewed with the fovea. An experiment was carried out to assess whether the spectral distribution of a glare source might differentially impact one's ability to see a target using peripheral vision when the location of the target is not known.
Technical Paper

Influence of LED Spectral Characteristics on Glare Recovery

2019-04-02
2019-01-0845
Headlight glare is a major concern of the driving public. In the past couple of years there have been concerns expressed about the use of light emitting diode (LED) lighting technologies and possible impacts LEDs may have on people, including circadian disruption, retinal hazards, and glare. Under typical use cases, vehicle headlight exposures are insufficient to cause circadian disruption or retinal damage, but can result in disability and discomfort glare, as well as glare recovery. In general, white LEDs used for illumination have greater short-wavelength content than halogen lamps used in many headlights, and short wavelengths have been implicated in visual discomfort from bright lights at night. Previous literature is inconsistent regarding whether the spectral (color) content of a glare source affects the amount of recovery time needed to see objects, following exposure to a bright light such as a vehicle headlight.
Technical Paper

Impacts of Flashing Emergency Lights and Vehicle-Mounted Illumination on Driver Visibility and Glare

2019-04-02
2019-01-0847
Flashing emergency lights on police cars, fire trucks, and ambulances need to be bright enough to alert otherwise unaware drivers about their presence on and near the roadway. Anecdotal evidence suggests that public safety agencies select emergency lighting systems with red or blue flashing lights based on their apparent brightness, with brighter lights judged as "better." With the advent of light emitting diodes (LEDs), emergency flashing lights are brighter and produce more highly saturated colors, thereby causing greater discomfort and disability glare. As a result, first response workers are at higher risk for being injured or killed in vehicle crashes because approaching drivers cannot see them. In the present study, participants viewed red and blue flashing lights on a scale model police vehicle, conforming to present recommended practices for emergency lights. Lights varied in intensity and optical power (intensity × duration).
Technical Paper

Assessment of Adaptive Driving Beam Photometric Performance

2016-04-05
2016-01-1408
Although adaptive driving beam headlight systems are not presently defined in North American headlighting standards, evidence for the potential safety benefits of these systems is increasing. Field measurements of the photometric performance of an adaptive driving bean system were made in response to simulated headlight and tail light conditions. Roadway geometries were varied and multiple measurements for many conditions were made to assess repeatability of measurements. The results of the testing are summarized in the context of validating the likely safety impacts of these systems and of providing recommendations for standardized measurement conditions to ensure reliability.
Technical Paper

Impacts of Dynamic Rear Lighting on Driver Response

2014-04-01
2014-01-0434
Rear automotive lighting systems employing dynamic features such as sweeping or flashing are not commonly used on vehicles in North America, in part because they are not clearly addressed in vehicle lighting regulations. Nor is there abundant evidence suggesting they have a substantial role to play in driver safety. The results of a human factors investigation of the potential impacts of dynamic rear lighting systems on driver responses are summarized and discussed in the context of safety, visual effectiveness and the present regulatory context.
Journal Article

Vehicle Lighting and Modern Roundabouts: Implications for Pedestrian Safety

2012-04-16
2012-01-0268
Modern roundabout facilities are increasing in number throughout North America and the world. Appropriate vehicle lighting, including the application of intelligent headlighting systems, might help support safe, efficient driving behavior while navigating through these new intersection types. We present the results of a field study conducted to compare different vehicle lighting systems in terms of drivers' ability to detect and identify pedestrian activity, under different amounts of illumination from fixed outdoor lighting systems. The results are compared to analytical predictions of visibility using a validated visual performance model.
Technical Paper

Real-World Measurement of Headlamp Illumination

2010-04-12
2010-01-0294
We summarize the development and initial deployment of a system that can be mounted along an intersection, curve, drive-in, or parking facility to efficiently gather relevant data about headlamp patterns that might relate to glare or visibility. The system can run autonomously to collect many vehicles per data collection period. The system includes a range finder to capture information when an approaching vehicle is at a specific location, a digital camera to store images of oncoming headlamp position (i.e., mounting height), two arrays of light sensors to measure the vertical headlamp illumination profile (e.g., angular position of headlamp beam cutoff or maximum luminous intensity), and a color-calibrated illuminance meter at the angular location of an oncoming driver's eyes. From the headlamp mounting height data and the vertical cutoff location data, an estimate of the headlamp aim distribution can be made.
Journal Article

Visual Recovery and Discomfort Following Exposure to Oncoming Headlamps

2009-04-20
2009-01-0546
A field experiment was performed to measure the effects of oncoming illuminance profiles with different photometric and temporal characteristics on visual recovery and subjective discomfort. Target detection time was correlated with the dosage, and rated discomfort was correlated with the peak illuminance of each profile. Older subjects generally had longer recovery times, but there were no differences between the age groups in terms of rated discomfort. The results suggest that discomfort glare is not predictive of visual disability and that control of luminous intensity at isolated points within the distribution of headlamps alone is not sufficient to minimize glare recovery.
Technical Paper

Effect of Dynamic Lighting Conditions on Visual Detection

2009-04-20
2009-01-0544
The present design standards for low beam headlamps offer significant flexibility regarding the distribution of light that they generate. Some headlamp systems produce significant amounts of foreground illumination, which increases the apparent brightness of the roadway surface close to the vehicle, and this increased brightness is seen as desirable by many individuals. Some individuals may prefer not only high but uniform foreground illumination. At almost any driving speed, however, any objects located in the visual foreground are too close to avoid with slowing or steering maneuvers. Further, published literature on the mechanisms for disability glare suggests that foreground illumination should have a negative impact in terms of the visibility of objects located well ahead in the visual field.
Technical Paper

Influence of Foreground Illumination from Headlamps on Visibility and Preference

2009-04-20
2009-01-0336
The present design standards for low beam headlamps offer significant flexibility regarding the distribution of light that they generate. Some headlamp systems produce significant amounts of foreground illumination, which increases the apparent brightness of the roadway surface close to the vehicle, and this increased brightness is seen as desirable by many individuals. Some individuals may prefer not only high but uniform foreground illumination. At almost any driving speed, however, any objects located in the visual foreground are too close to avoid with slowing or steering maneuvers. Further, published literature on the mechanisms for disability glare suggests that foreground illumination should have a negative impact in terms of the visibility of objects located well ahead in the visual field.
X