Refine Your Search

Search Results

Author:
Viewing 1 to 16 of 16
Technical Paper

Developing Domain Ontologies and an Integration Ontology to Support Modeling and Simulation of Next-Generation Ground Vehicle Systems

2022-03-29
2022-01-0361
The development of next-generation ground vehicle systems relies on modeling and simulation to predict vehicle performance and conduct trade studies in the design and acquisition process. In this paper, we describe the development of an ontology suite to support modeling and simulation of next generation military ground vehicles. The ontology suite is intended to address model reuse challenges and increase the shared understanding of ground vehicle system simulations. The ontology suite consists of four domain ontologies: Vehicle operations (VehOps), Operational environment (Env), Ground vehicle architecture (VehArch), and Simulation model ontology (SimMod) and one integration ontology. The separate domain ontologies allow for extensibility, while the integration ontology establishes semantic relationships across the domains ontologies.
Journal Article

Approaches for Simulation Model Reuse in Systems Design — A Review

2022-03-29
2022-01-0355
In this paper, we review the literature related to the reuse of computer-based simulation models in the context of systems design. Models are used to capture aspects of existing or envisioned systems and are simulated to predict the behavior of these systems. However, developing such models from scratch requires significant time and effort. Researchers have recognized that the time and effort can be reduced if existing models or model components are reused, leading to the study of model reusability. In this paper, we review the tasks necessary to retrieve and reuse model components from repositories, and to prepare new models and model components such that they are more amenable for future reuse. Model reuse can be significantly enhanced by carefully characterizing the model, and capturing its meaning and intent so that potential users can determine whether the model meets their needs.
Journal Article

Development of a Series Hybrid Electrified Powertrain for a High Speed Tracked Vehicle Based on Driving Cycle Simulation

2022-03-29
2022-01-0367
Series hybrid powertrain design and control strategies for high-speed, tracked, off-road vehicles depend on driving conditions, requiring a comprehensive approach to defining operational parameters prior to the design process. Although some vehicle speed and road grade profiles are available for tracked vehicles, these driving cycles are insufficient for hybrid powertrain characterization since they often neglect highly transient torque requirements for differential speed steering. Generating a difference in track speeds requires high traction torque, often with opposite directions, to overcome immense friction and is a significant contributor to both powertrain design and control decisions. This research presents a track model based on Finite Element Analysis (FEA) to calculate the steering load, which is then incorporated with ground speed and grade information to formulate more realistic driving cycles for tracked vehicles.
Technical Paper

A Functional Decomposition Approach for Feature-Based Reference Architecture Modeling

2021-04-06
2021-01-0259
Variant modeling techniques have been developed to allow systems engineers to model multiple similar variants in a product line as a single variant model. In this paper, we expand on this past work to explore the extent to which variant modeling in SysML can be applied to a broad range of dissimilar systems, covering the entire domain of ground vehicles, in single reference architecture model. Traditionally, a system’s structure is decomposed into subsystems and components. However, this method is found to be ineffective when modeling variants that are functionally similar but structurally different. We propose to address this challenge by first decomposing the system not only by subsystem but also by high-level function. This pattern is particularly useful for situations where two variants perform the same function, but one variant performs the function using one subsystem, whereas the other variant performs the same function using one or more different subsystems.
Technical Paper

Automation of a Design Optimization Process for Fiber Reinforced Polymer Sandwich Structures

2021-04-06
2021-01-0363
Compared to traditional materials, carbon fiber reinforced polymers (CRFPs) have allowed designers to design stiff, light-weight structures, but at the cost of increased complexity in the design process. In this paper, the automation and optimization of the composite design process and how it affects design space exploration are evaluated. Specifically investigated is the design process for CFRP sandwich structures using the third-party optimization software modeFRONTIER. For given surface geometry and load cases, the approach aims to explore the Pareto frontier for the minimization of mass while constraining stiffness parameters. In this approach, the problem is framed as a single integrated optimization problem. In each optimization iteration, this method updates the CAD geometry and discretization of plies across the structure before exporting the model for Finite Element Analysis (FEA).
Journal Article

Automatic Formal Verification of SysML State Machine Diagrams for Vehicular Control Systems

2021-04-06
2021-01-0260
Vehicular control systems are characterized with numerous complex interactions with a steady rise of autonomous functions, which makes it more challenging for designers and safety engineers to identify unexpected failures. These systems tend to be highly integrated and exhibit features like concurrency for which traditional verification and validation techniques (i.e. testing and simulation) are insufficient to provide rigorous and complete assessment. Model Checking, a well-known formal verification technique, can be used to rigorously prove the correctness of such systems according to design Requirements. In particular, Model Checking is a method for formally verifying finite-state concurrent systems. Specifications about the system are expressed as temporal logic formulas, and efficient symbolic algorithms are used to traverse the model defined by the system and check if the specification holds or not.
Technical Paper

A Preliminary Method of Delivering Engineering Design Heuristics

2020-04-14
2020-01-0741
This paper argues the importance of engineering heuristics and introduces an educational data-driven tool to help novice engineers develop their engineering heuristics more effectively. The main objective in engineering practice is to identify opportunities for improvement and apply methods to effect change. Engineers do so by applying ‘how to’ knowledge to make decisions and take actions. This ‘how to’ knowledge is encoded in engineering heuristics. In this paper, we describe a tool that aims to provide heuristic knowledge to users by giving them insight into heuristics applied by experts in similar situations. A repository of automotive data is transformed into a tool with powerful search and data visualization functionalities. The tool can be used to educate novice automotive engineers alongside the current resource intensive practices of teaching engineering heuristics through social methods such as an apprenticeship.
Technical Paper

Optimization of Energy Management Strategy for Range-Extended Electric Vehicle Using Reinforcement Learning and Neural Network

2020-04-14
2020-01-1190
A Range-Extended Electric Vehicle (REEV) uses battery as the primary energy source and engine as the secondary source to extend the total range of the vehicle. Deep Orange 11 program at Clemson University is proposing a REEV for solving the mobility needs in the year 2040. Designing the Energy Management System (EMS) of such a vehicle is a critical aspect of the problem statement of this program to improve the vehicle economy and bring down the cost of operation of the vehicle. This paper proposes a reinforcement learning based algorithm for designing the EMS of such a vehicle. Q-learning is a model-free algorithm which seeks to improve the cumulative reward by finding the best policy over the course of operation. A rule-based strategy is first used to establish a baseline model of engine operation during the operation of vehicle over an EPA drive-cycle (FHDS).
Journal Article

Integration of Autonomous Vehicle Frameworks for Software-in-the-Loop Testing

2020-04-14
2020-01-0709
This paper presents an approach for performing software in the loop testing of autonomous vehicle software developed in the Autoware framework. Autoware is an open source software for autonomous driving that includes modules such as localization, detection, prediction, planning and control [8]. Multitudes of autonomous driving frameworks exist today, each having its own pros and cons. Often, MATLAB-Simulink is used for rapid prototyping, system modeling and testing, specifically for the lower-level vehicle dynamics and powertrain control features. For the autonomous software, the Robotic Operating System (ROS) is more commonly used for integrating distributed software components so that they can easily share information through a publish and subscribe paradigm. Thorough testing and evaluation of such complex, distributed software, implemented on a physical vehicle poses significant challenges in terms of safety, time, and cost, especially when considering rare edge cases.
Technical Paper

The Integrated Electric Lifestyle: The Economic and Environmental Benefits of an Efficient Home-Vehicle System

2013-04-08
2013-01-0495
In recent years, the residential and transportation sectors have made significant strides in reducing energy consumption, mainly by focusing efforts on low-hanging fruit in each sector independently. This independent viewpoint has been successful in the past because the user needs met and resources consumed in each sector have been clearly distinct. However, the trend towards vehicle electrification has blurred the boundary between the sectors. With both the home and vehicle now relying upon the same energy source, interactions between the systems can no longer be neglected. For example, when tiered utility pricing schemes are considered, the energy consumption of each system affects the cost of the other. In this paper, the authors present an integrated Home-Vehicle Simulation Model (HVSM), allowing the designer to take a holistic view.
Journal Article

Accounting for the Duration of Analyses in Design Process Decisions

2010-04-12
2010-01-0908
Although the design phase can account for a sizable amount of the resources consumed during the product realization process, the time and costs associated with the design process are often neglected when making design decisions. To investigate this issue, we define a process-centric decision model in which the design-phase consumption of resources, such as time and money, is explicitly modeled. While it is clear that the utility of a design is almost always directly impacted by the monetary costs of the design process, our decision model also accounts for the fact that the profit earned by a product depends strongly on its launch date. The decision model allows us thus to consider the trade-off between the time necessary for analysis and the improvement in product quality that results from the analysis. The decision model is sufficiently generic that almost any set of beliefs about the alternatives or analyses, as well as any utility-based preference structure can be modeled.
Journal Article

Model-Based Optimization of a Hydraulic Backhoe using Multi-Attribute Utility Theory

2009-04-20
2009-01-0565
Modeling and simulation are commonly used in all stages of the design process. This is particularly vital to the success of systems engineering projects where the system under consideration is complex and involves interactions between many interdisciplinary subsystems. In the refining stages of the design process (after concept selection), models and simulations can be used to refine and optimize a system with respect to the decision maker’s objectives. In this paper, a dynamic model of a hydraulic backhoe serves as a test-bed for a large-scale sensitivity analysis and subsequent optimization of the most significant design parameters. The model is optimized under uncertainty with respect to a multi-attribute utility function that includes fuel consumption, cost of the key components, and machine performance.
Technical Paper

Managing Multiple Sources of Epistemic Uncertainty in Engineering Decision Making

2007-04-16
2007-01-1481
Managing uncertainty is an integral part of making well-informed engineering decisions. When formulating a design problem, many of the variables and models contain epistemic uncertainty, uncertainty due to lack of knowledge. If this lack of knowledge is significant, it may be advantageous to acquire additional information before making a design decision. In this paper, we develop a framework for identifying which sources of epistemic uncertainty should be reduced to improve the overall quality of the design decision. Using principles of information economics, utility theory, and probability bounds analysis, we determine how much additional information should be acquired for each uncertain quantity in the decision problem. Our approach is illustrated with an example for the environmentally benign design of an electric vehicle.
Technical Paper

Probability Bounds Analysis as a General Approach to Sensitivity Analysis in Decision Making Under Uncertainty

2007-04-16
2007-01-1480
Engineers often perform sensitivity analyses to explore how changes in the inputs of a physical process or a model affect the outputs. This type of exploration is also important for the decision-making process. Specifically, engineers may want to explore whether the available information is sufficient to make a robust decision, or whether there exists sufficient uncertainty-i.e., lack of information-that the optimal solution to the decision problem is unclear, in which case it can be said to be sensitive to information state. In this paper, it is shown that an existing method for modeling and propagating uncertainty, called Probability Bounds Analysis (PBA), actually provides a general approach for exploring the global sensitivity of a decision problem that involves both probabilistic and imprecise information. Specifically, it is shown that PBA conceptually generalizes an approach to sensitivity analysis suggested in the area of decision analysis.
Technical Paper

Applying Information-Gap Decision Theory to a Design Problem Having Severe Uncertainty

2006-04-03
2006-01-0273
Often in the early stages of the engineering design process, a decision maker lacks the information needed to represent uncertainty in the input parameters of a performance model. In one particular form of severely deficient information, a nominal estimate is available for an input parameter, but the amount of discrepancy between that estimate and the parameter's true value, as well as the implications of that discrepancy on system performance, are not known. In this paper, the concepts and techniques of information-gap decision theory (IGDT), an established method for making decisions robust to severely deficient information, are examined more closely through application to a design problem with continuous design variables. The uncertain variables in the chosen example problem are parameters of a probability distribution, so the relationship between IGDT and design approaches considering precise and/or imprecise probabilities is explained.
Technical Paper

Eliminating Design Alternatives Based on Imprecise Information

2006-04-03
2006-01-0272
In this paper, the relationship between uncertainty and sets of alternatives in engineering design is investigated. In sequential decision making, each decision alternative actually consists of a set of design alternatives. Consequently, the decision-maker can express his or her preferences only imprecisely as a range of expected utilities for each decision alternative. In addition, the performance of each design alternative can be characterized only imprecisely due to uncertainty from limited data, modeling assumptions, and numerical methods. The approach presented in this paper recognizes the presence of both imprecision and sets in the design process by focusing on incrementally eliminating decision alternatives until a small set of solutions remains. This is a fundamental shift from the current paradigm where the focus is on selecting a single decision alternative in each design decision.
X