Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Comparability of Hot-Wire Estimates of Liquid Water Content in SLD Conditions

2023-06-15
2023-01-1423
Future compliance to FAA 14 CFR Part 25 and EASA CS-25 Appendix O conditions has required icing wind tunnels to expand their cloud simulation envelope, and demonstrate accurate calibration of liquid water content and droplet particle size distributions under these conditions. This has led to a renewed community interest in the accuracy of these calibrations, and the potential inter-facility bias due to the choice of instrumentation and processing methods. This article provides a comparison of the response of various hot-wire liquid water content instruments under Appendix C and supercooled large droplet conditions, after an independent similar analysis at other wind tunnel facilities. The instruments are being used, or are under consideration for use, by facilities collaborating in the ICE GENESIS program.
Technical Paper

A New 1D2D Optical Array Particle Imaging Probe for Airborne and Ground Simulation Cloud Measurements

2023-06-15
2023-01-1415
A new optical array imaging probe, called the 1D2D probe, has been developed by Science Engineering Associates, with features added to improve the real-time and post-analysis measurements of particle spectra, particularly in the Supercooled Large Droplet size range. The probe uses optical fibers and avalanche photodiodes to achieve a very high frequency response, and a Field-Programmable Gate Array that performs real-time particle rejection and processing of accepted particles with negligible inter-particle dead time. The probe records monochromatic two-dimensional images, while also recording the number of individual particle pixels at a second grey scale level. The probe implements flexible features to filter recording of highly out of focus particles to improve the accuracy of particle size determination, or to reject small particles to improve the statistics of measurements of larger particles.
Technical Paper

Wind Tunnel Measurements of Simulated Glaciated Cloud Conditions to Evaluate Newly Developed 2D Imaging Probes

2019-06-10
2019-01-1981
Instrumentation that has been used for characterization of mixed-phase and glaciated conditions in the past, like the OAP probes, are subject to errors caused by variations in diffraction on the images away from the object plane and by the discrete nature of their particle detection and sizing. Correction methods are necessary to consider their measurements adequate for high ice water content (IWC) environments judged to represent a significant safety hazard to propellers and turbofan engine operability and performance. For this reason, within the frame of EU FP7 HAIC project, instrumentation characterization and validation is considered a major element need for successful execution of flight tests campaigns. Clearly, instrumentation must be sufficiently reliable to assess the reproducibility of artificial clouds with high ice water content generated in icing tunnels.
Journal Article

Improvement of an Altitude Test Facility Capability in Glaciated Icing Conditions at DGA Aero-engine Testing

2015-06-15
2015-01-2154
The A06 test facility designed for combustor testing in altitude has been modified to be converted in an icing facility for probe testing. The objective was to be able to simulate ice crystals conditions at high altitude, high Mach number and low temperature. This facility has been upgraded in several steps extending the median size of the ice crystals produced and the ice water content range. The aero-thermal and icing capabilities have been assessed during commissioning tests. Finally, in order to prepare the calibration of the facility, some measurement techniques for cloud characterization have been selected or developed, especially for cloud uniformity measurement.
Technical Paper

Cloud Calibration Update of the CIRA Icing Wind Tunnel

2003-06-16
2003-01-2132
Icing wind tunnels are one of the most important means of compliance available in support of aircraft icing certification process. A brand new Icing Wind Tunnel (IWT) has recently entered into service at the Italian Aerospace Research Centre (CIRA). During the facility commissioning, the main flow quality parameters and icing cloud characteristics have been measured. Prior to first customer testing, the icing cloud characteristics have been in-depth examined in the Main Test Section configuration. All measurements have been performed in a cross section located in the model centre of rotation. The icing cloud parameters have been measured using world accepted practices and instrumentation. The Mean Volume droplets Diameter (MVD) of the artificial cloud has been determined using an Airborne Droplet Analyser (ADA) system based on Phase Doppler Particle Analyser (PDPA) technique, while the Liquid Water Content (LWC) measurements have been carried out using a standard icing blade.
X