Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analytical Methodology for the Prediction of the Wear of Damper Springs in Dry Friction Clutches

2021-09-22
2021-26-0384
Coil springs are crucial components of the clutch damper. Quantifying the stresses accumulated on them during operation is crucial in the prediction of remaining usable spring life. This paper demonstrates the use of a mathematical model-based approach in predicting the behavior of localized stresses on the spring used in clutch dampers. An equivalent cantilever beam model for spring coils solved using the theory of elastic stability is utilized to predict the spring response in operation, a contact model that translates the spring response into localized stresses due to wear and iterative wear model that accounts for surface morphology and change in geometry due to wear is illustrated in this paper for the prediction of wear.
Journal Article

Fatigue Behavior of Cast Iron Including Mean Stress Effects

2015-04-14
2015-01-0544
With improvements in casting technology, cast iron can be an alternative to steel in some applications due to its similar strength. One objective of this study was to analyze cast iron data obtained from the literature and evaluate predictive correlations between its tensile, microstructural, and fatigue properties. Reasonably good correlation of tensile strength and yield strength were found with hardness. However, fatigue strength could not be correlated with hardness or tensile properties. Another objective of this study was to evaluate tensile and compressive means stress effects on fatigue behavior of 120-90-02 ductile cast iron experimentally, as well as analytically by using predictive models. Mean stress levels were chosen such that R ratios in load-controlled tests were −7, −3, −1, 0, 1/3, 0.5, and 0.75. Modified Goodman, Smith-Watson-Topper, FKM and the Fatemi-Socie mean stress parameters were used to account for the mean stress effect on fatigue life.
Journal Article

Axial and Bending Fatigue of a Medium Carbon Steel Including Geometry and Residual Stress Effects

2009-04-20
2009-01-0422
This paper discusses the effects of changes in specimen geometry, stress gradient, and residual stresses on fully-reversed constant amplitude uniaxial fatigue behavior of a medium carbon steel. Axial fatigue tests were performed on both flat and round specimens, while four-point rotating bending tests were performed only on round specimens. All the tests were performed using shot peened and unpeened flat and round samples, to investigate the effects of compressive residual stresses on fatigue behavior. The specimens in the rotating bending tests experienced longer life for a given stress amplitude than in the axial test. Shot-peening was found to be beneficial in the long life region, while in short life tests the shot-peened samples experienced a shorter life than the unpeened samples under both axial and bending test conditions.
X