Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Clarification of Transient Characteristics by Coupled Analysis of Powertrains and Vehicles

2016-04-05
2016-01-1314
With the goal of improving drivability, this research aimed to clarify the mechanism of vehicle longitudinal acceleration, focusing on tip-in acceleration. Conventional typical analysis methods include experimental modal and model-based analysis. However, since the former requires the measurement of impulses and other input forces while the vehicle is stopped, measurement under actual driving conditions is difficult. The latter requires characteristic values such as the stiffness and damping coefficients to be identified in advance, which cannot be achieved either easily or precisely. Therefore, this paper proposes a new experiment-based analysis method. This method enables the acquisition of engine torque and transmission torque/force by measuring only the acceleration values of some components under driving conditions.
Technical Paper

On-Board Estimation of Vehicle Weight By Optimizing Signal Processing

2006-04-03
2006-01-1489
The performances of some vehicle control systems are influenced by changes in the weight of the vehicle. In these systems, it is important to be able to estimate the weight without the need for special sensors. When we use physical models to do this, we have to provide estimates for two or more unknown parameters. In addition, since such a method is influenced by disturbances in the measured signals, it is difficult to maintain an acceptable level of accuracy. So, after analyzing the physical phenomena, we developed a new method that eliminates the influence of the disturbances from the measured signals and constructed an estimation system that has a minimum number of unknown parameters that was capable of providing a more accurate estimate of a vehicle weight. This method was applied to the braking force control of an automatic transmission and its efficacy was verified.
X