Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Experimental High Temperature Analysis of a Low-Pressure Diesel Spray for DPF Regeneration

2019-09-09
2019-24-0035
In the current automotive scenario, particulate filter technology is mandatory in order to attain emission limits in terms of particulate matter for diesel engines. Despite the fact that the Diesel Particulate Filter (DPF) is often considered a mature technology, significant issues can result from the use of the engine fuel injectors to introduce into the exhaust pipe the fuel needed to ignite the particulate matter accumulated in the filter during its regeneration. The most important issue is lubricant oil dilution with fuel as a consequence of significant spray impact on the cylinder liner. As an alternative, the fuel required to start DPF regeneration can be introduced in the exhaust pipe by an auxiliary low-pressure injector spraying in the hot exhaust gas stream.
Technical Paper

In-Situ Exhaust Visualization of Near-Nozzle Urea-Based Deposits Formation in an Underfloor SCR Injection Location

2017-10-08
2017-01-2376
Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of the formation of near-nozzle deposits that have been observed on existing underfloor SCR systems. The current work presents in-situ time lapse imaging of an underfloor mounted AUS-32 exhaust-mounted urea dosing unit. The operating conditions under examination are representative of low-load low speed urban driving interspersed with high temperature exposures typical of periodic DPF regeneration.
Journal Article

Instantaneous Flow Rate Testing with Simultaneous Spray Visualization of an SCR Urea Injector at Elevated Fluid Temperatures

2017-09-04
2017-24-0109
Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of urea sprays under operating conditions including those where fluid temperatures exceed the atmospheric fluid boiling point. Results were previously presented from imaging of an AUS-32 injector spray which showed substantial structural differences in the spray between room temperature fluid conditions, and conditions where the fluid temperature approached and exceeded 104° C and “flash boiling” of the fluid was initiated.
Journal Article

Experimental Assessment of a Novel Instrument for the Injection Rate Measurement of Port Fuel Injectors in Realistic Operating Conditions

2017-03-28
2017-01-0830
In the present paper an innovative approach for the shot-to-shot hydraulic characterization of low pressure injection systems is experimentally assessed. The proposed methodology is an inverse application of the Zeuch’s method, which in this case is applied to a closed volume upstream the injector instead of downstream of it as in conventional injection analyzers. By this approach, the well-known constraint of having a finite volume pressurized with the injected liquid downstream the injector is circumvented. As a consequence, with the proposed instrument low pressure injectors - such as PFI, fed with gasoline or water, SCR injectors - can operate with the prescribed upstream-downstream pressure differential. Further, the injector can spray directly in atmosphere or in any ambient at arbitrary pressure and temperature conditions, allowing the simultaneous application of other diagnostics such as imaging, momentum flux measurement or sizing instruments.
Technical Paper

Experimental Analysis of the Urea-Water Solution Temperature Effect on the Spray Characteristics in SCR Systems

2015-09-06
2015-24-2500
One of the favored automotive exhaust aftertreatment solutions used for nitrogen oxides (NOx) emissions reductions is referred to as Selective Catalytic Reduction (SCR), which comprises a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx). It is customary with these systems to generate the NH3 by injecting a liquid aqueous urea solution (AUS-32) into the exhaust. The urea solution is injected into the exhaust and transformed to NH3 by various mechanisms for the SCR reactions. Understanding the spray performance of the AUS-32 injector is critical to proper optimization of the SCR injection system. Results were previously presented from imaging of an AUS-32 injector spray under hot exhaust conditions at the injector spray exit for an exhaust injection application.
Technical Paper

AUS-32 Injector Spray Imaging on Hot Air Flow Bench

2015-04-14
2015-01-1031
The recent implementation of new rounds of stringent nitrogen oxides (NOx) emissions reduction legislation in Europe and North America is driving the expanded use of exhaust aftertreatment systems, including those that treat NOx under the high-oxygen conditions typical of lean-burn engines. One of the favored aftertreatment solutions is referred to as Selective Catalytic Reduction (SCR), which comprises a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx). It is customary with these systems to generate the NH3 by injecting a liquid aqueous urea solution, typically at a 32% concentration of urea (CO(NH2)2). The solution is referred to as AUS-32, and is also known under its commercial name of AdBlue® in Europe, and DEF - Diesel Exhaust Fluid - in the USA. The urea solution is injected into the exhaust and transformed to NH3 by various mechanisms for the SCR reactions.
Technical Paper

Initial Evaluations of Injector Compatibility with an Alternative SCR Reductant Carrier - Guanidinium Formate

2014-04-01
2014-01-1532
The implementation of stringent nitrogen oxides (NOx) emissions reduction legislation in Europe and North America is driving the introduction of new exhaust aftertreatment systems, including those that treat NOx under the high-oxygen conditions typical of lean-burn engines. One increasingly common solution, referred to as Selective Catalytic Reduction (SCR), comprises a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx) to produce nitrogen (N2) and water (H2O). It is customary with these systems to use a liquid aqueous urea solution, typically at a 32% concentration of urea (CO(NH2)2). The solution is referred to as AUS-32, and is also known under its commercial name of AdBlue® in Europe, and DEF - Diesel Exhaust Fluid - in the USA. The urea solution is injected into the exhaust and transformed to NH3 by various mechanisms for the SCR reactions.
Technical Paper

High Speed Video Measurements of a High Temperature Urea Injector Spray - Comparison of Spray Evolution in Water and AUS-32

2013-10-14
2013-01-2527
The recent implementation of new rounds of stringent nitrogen oxides (NOx) emissions reduction legislation in Europe and North America is driving the introduction of new exhaust aftertreatment systems, including those that treat NOx under the high-oxygen conditions typical of lean-burn engines. One increasingly common solution, referred to as Selective Catalytic Reduction (SCR), comprises a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx) to produce nitrogen (N2) and water (H2O). It is customary with these systems to use a liquid aqueous urea solution, typically at a 32% concentration of urea (CO(NH2)2). The solution is referred to as AUS-32, and is also known under its commercial name of AdBlue® in Europe, and DEF - Diesel Exhaust Fluid - in the USA. The urea solution is injected into the exhaust and transformed to NH3 by various mechanisms for the SCR reactions.
Technical Paper

High Speed Video Measurements with Water of a Planar Laser Illuminated Heated Tip Urea Injector Spray

2013-04-08
2013-01-1073
The recent implementation of new rounds of stringent nitrogen oxides (NOx) emissions reduction legislation in Europe and North America is driving the introduction of new exhaust aftertreatment systems, including those that treat NOx under the high-oxygen conditions typical of lean-burn engines. One increasingly common solution, referred to as Selective Catalytic Reduction (SCR), comprises a catalyst that facilitates the reactions of ammonia (NH₃) with the exhaust nitrogen oxides (NOx) to produce nitrogen (N₂) and water (H₂O). It is customary with these systems to use a liquid aqueous urea solution, typically at a 32% concentration of urea (CO(NH₂)₂). The solution is referred to as AUS-32, and is also known under its commercial name of AdBlue® in Europe, and DEF - Diesel Exhaust Fluid - in the USA. The urea solution is injected into the exhaust and transformed to NH₃ by various mechanisms for the SCR reactions.
Technical Paper

High Speed Video Measurements of a Heated Tip Urea Injector Spray

2012-09-10
2012-01-1747
The recent implementation of new rounds of stringent nitrogen oxides (NOx) emissions reduction legislation in Europe and North America is driving the introduction of new automotive exhaust aftertreatment systems. One of these technologies comprises a catalyst that facilitates the reactions of ammonia (NH₃) with the exhaust nitrogen oxides (NOx) to produce nitrogen (N₂) and water (H₂O). This technology is referred to as Selective Catalytic Reduction (SCR). The ammonia is delivered by a separate fluid supply and injection system to the exhaust in the form of AUS-32 (Aqueous Urea Solution), and is also known under its commercial name of AdBlue® in Europe, and DEF - Diesel Exhaust Fluid - in the USA. The development and application of current production AUS-32 injection systems typically rely on spray diagnostics techniques that were implemented for the gasoline port injector. These data are often obtained under standard room temperature conditions.
X