Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Method for Optimizing Scooter Engine Mounts Position for Reduced Vibration

2016-11-08
2016-32-0042
Vibrations have become an increasingly important attribute for determining the quality of automotive products. Particularly, this becomes more acute in the case of tactile vibrations of powered two-wheelers - motorcycles and scooters. This paper deals with vibrations of a scooter vehicle. Scooters are normally a two-wheeler with a four stroke single cylinder spark ignited engine. Vibrations of a scooter are mainly caused by the inertial imbalance forces of the engine, combustion forces and road undulations. Vibrations due to road undulations are mostly reduced by toggle link mechanism, resilient mounts of the engine and the shock absorbing suspension of the frame. The power train assembly is designed in such a way that the inertial imbalance forces in the power train assembly are distributed at a required angle called the ellipse angle.
Technical Paper

Mechanical Noise Reduction of Valve Train System in Small SI Scooter Engines

2016-04-05
2016-01-1053
This paper discusses various noise sources of cylinder head assembly and focuses on design options developed to reduce the cylinder head noise in a single cylinder, 110cc scooter engine. Various experimental procedures were used for identification and ranking of different noise sources. In case of air-cooled small engines, temperature effects are dominant and as a consequence certain noises stand out in hot condition causing severe noise discomfort. After identifying the reasons for abnormal cylinder head noise, countermeasure mechanisms for reducing unintended impacts of valve train/ rocker arm in the layout were developed. The side-effects due to introduction of these additional mechanisms are studied using performance metrics. It is essential to limit noise deterioration over time to increase customer satisfaction. Simulation cycles were developed to quantify the cylinder head noise deterioration using accelerated testing procedures.
X