Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Loads Cascading in the Frequency Domain

2018-04-03
2018-01-0138
A previous SAE paper (ref. 1) did a comparative study of automotive system fatigue models processed in the time and frequency domain. A subsequent paper (ref. 2) looked at relative random analysis under base shake loading conditions. This paper proposes to merge these two analysis procedures to implement a new “Loads Cascading” procedure. The objective of this paper will be to show how loads (accelerations, displacements, forces) can be cascaded (transferred) from input load position such as road load data (RLD) body loads to some internal location, for example a battery pack location. Also note that the response from one “module” could form the input to another, therefore, once the loadings are in the frequency domain, the possibility exists to “cascade” the loads through a system. For example, from the chassis, to the subframe to attached components.
Technical Paper

Frequency FE-Based Weld Fatigue Life Prediction of Dynamic Systems

2017-03-28
2017-01-0355
In most aspects of mechanical design related to a motor vehicle there are two ways to treat dynamic fatigue problems. These are the time domain and the frequency domain approaches. Time domain approaches are the most common and most widely used especially in the automotive industries and accordingly it is the method of choice for the fatigue calculation of welded structures. In previous papers the frequency approach has been successful applied showing a good correlation with the life and damage estimated using a time based approach; in this paper the same comparative process has been applied but now extended specifically to welded structures. Both the frequency domain approach and time domain approach are used for numerically predicting the fatigue life of the seam welds of a thin sheet powertrain installation bracketry of a commercial truck submitted to variable amplitude loading. Predicted results are then compared with bench tests results, and their accuracy are rated.
Technical Paper

A Comparative Study of Automotive System Fatigue Models Processed in the Time and Frequency Domain

2016-04-05
2016-01-0377
The objective of this paper is to demonstrate that frequency domain methods for calculating structural response and fatigue damage can be more widely applicable than previously thought. This will be demonstrated by comparing results of time domain vs. frequency domain approaches for a series of fatigue/durability problems with increasing complexity. These problems involve both static and dynamic behavior. Also, both single input and multiple correlated inputs are considered. And most important of all, a variety of non-stationary loading types have been used. All of the example problems investigated are typically found in the automotive industry, with measured loads from the field or from the proving ground.
X