Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Analytical Design and Development for Automobile Powertrain Mounts Using Low Fidelity Calculators

2016-02-01
2016-28-0185
The excitation to a vehicle is from two sources, road excitation and powertrain excitation. Vehicle Suspension is designed to isolate the road excitation coming to passenger cabin. Powertrain mounts play a vital role in isolating the engine excitation. The current study focuses on developing an analytical approach using Low-Fidelity computer programs to design the Powertrain Mount layout and stiffness during the initial stage of product development. Three programs have been developed as a part of this study that satisfy the packaging needs, NVH requirements and static load bearing requirements. The applications are capable of providing the Kinetic Energy Distribution and Static Analysis (Powertrain Enveloping and Mount Durability) for 3-point and 4-point mounting systems and the ideal mount positions and stiffness for 3-point mounting systems.
Technical Paper

Integration and Packaging for Vehicle Electrification

2015-01-14
2015-26-0115
In current scenario importance of fuel efficient vehicles, lesser emissions & energy efficiency are the major considerations for any vehicle manufacturer. To meet these expectations vehicle manufacturer are exploring alternate powertrains to reduce emissions and produce better fuel efficient vehicles. For any vehicle manufacturer component cost, weight and package volume are the major driving factors for success. This is even true for latest upcoming hybrid and electric vehicles as well. To gain advantage and introduce products faster, OEMs are inclined to electrify their existing platforms to compete with other manufacturers. To convert existing vehicles into hybrid vehicles, all the major components like e machine, High voltage battery, power electronics etc. needs to be carefully packaged along with existing components in the same package space.
Technical Paper

Aspects of Fire and Thermal Safety in Vehicle Development

2015-01-14
2015-26-0156
This paper details the methodology used to prevent Thermal events in a vehicle at design and development stages which can lead to vehicle fire or Thermal events. Vehicle Safety is always been in prime focus for designers while introducing newer products in markets for the customers. It is now common to see vehicles catching on fire in roads and in parking places leading to destruction of the surroundings as well as hazard to the passengers. Thermal events can take place due to the heat dissipated by the heat emitters such as Engine, Turbo, Alternator, Exhaust System etc. So the most critical area where Thermal event can take place are under hood which includes the complete engine compartment and under body. The extent of fire depends on the fire source, characteristics of the materials used in constructing and furnishing the vehicle.
Technical Paper

Systems Engineering - a Logical Approach For OEMS to Deliver Advanced Technology Products in Competitive Dynamic Markets

2014-04-01
2014-01-0287
The need for automotive OEMs to manage product complexities and tough time to market in a competitive global industry mandates systems-driven product development process, which combines systems engineering methodology across all development domains with an integrated definition of the product. Businesses unable to adapt quickly lose mind share as well as market share. It is critical to the success of an automotive OEM to apply a consistent process framework based on systems engineering to capture, manage and organize information and knowledge, beginning with the voice of the customer, and continuing through product development, service, support and end-of-life. Systems engineering is important because it effectively nourishes an initial idea into a full system description, with all necessary elements integrated to form a complete product.
X