Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

On Perception Safety Requirements and Multi Sensor Systems for Automated Driving Systems

2020-04-14
2020-01-0101
One major challenge in designing SAE level 3-5 Automated Driving Systems (ADS) is to define requirements for the perception system that would enable argumentation for safe operation. The safety requirements on the perception system can only be fulfilled through redundancy in the sensor hardware. It is, however, a challenge to specify the redundancy that is required in the sensor system. Safe operation for an ADS is significantly more difficult compared to advanced driver assistance systems (ADAS). The safety argumentation for ADAS typically argues that in case of a failure in the sensor array a fail-silent behavior is acceptable because the human driver can take control of the vehicle back. This argumentation however is not possible when developing level 4 or higher automation. This paper investigates prerequisites for applying a systematic methodology for analyzing redundancy in a multi-sensor system and the relation to a conceptual ADS functional architecture.
Journal Article

V2V Communication Quality: Measurements in a Cooperative Automotive Platooning Application

2014-04-01
2014-01-0302
This paper presents measurements on Vehicle to Vehicle (V2V) communication between participants in a platooning application. Platooning, according to the SARTRE concept, implies several vehicles travelling together in tight formation, with a manually driven heavy lead vehicle. The platoon being studied consists of five vehicles; two trucks in the lead and three passenger cars. The V2V-communication node in each vehicle contains an 802.11p radio at 5,9 GHz. It is used to send messages between vehicles to coordinate movements and maintain safety in the platoon. Another cooperative application that relies on V2V-communication is multiple UAVs flying in formation; as investigated in KARYON. This project also investigates cooperative autonomous vehicles. In both applications, V2V-communication is an enabling technology. Two metrics are studied to quantify the V2V-communication quality: system packet error rate and consecutive packet loss.
Technical Paper

Functional Safety for Cooperative Systems

2013-04-08
2013-01-0197
This paper investigates what challenges arise when extending the scope of functional safety for road vehicles to also include cooperative systems. Two generic alternatives are presented and compared with one another. The first alternative is to use a vehicle centric perspective as is the case in the traditional interpretation of ISO 26262 today. Here, an “item” (the top level system or systems for which functional safety is to be assured) is assumed to be confined to one vehicle. In the vehicle centric perspective inter-vehicle communication is not an architectural element and is therefore not a candidate for redundancy as part of the functional safety concept. The second alternative is to regard a cooperative system from a cooperative perspective. This implies that one item may span over several vehicles. The choice of perspective has implications in several ways.
Technical Paper

A Process Membership Service for Active Safety Systems

2007-04-16
2007-01-1613
This paper describes a process membership protocol for distributed real-time systems that use both time-triggered and event-triggered message passing for communication between its processing nodes (ECUs). TTCAN and FlexRay are examples of communication networks that support such systems. The membership protocol supports redundancy management in architectures where distributed applications such as braking, stability control, and collision mitigation share a common set of processing nodes. We assume that each such application consists of several processes executing on different nodes and that each node executes processes belonging to different applications. The protocol allows a group of co-operating processes to establish a consistent view of each other's operational status, i.e. whether they function correctly or not.
X