Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Environmental and Safety Performance of Commercially-available Light-duty Vehicle Tires in North America

2018-04-03
2018-01-1336
New technology is enabling tire manufacturers to reduce tire rolling resistance, leading to reduced fuel consumption and greenhouse gas emissions in the transportation sector. This project analyzed current relationships between the environmental and safety performance of commercially-available light-duty tire models in North America. Performance data was rated using the EC No. 1222/2009, and compared against tire price, uniform tire quality grading standards (UTQG), and other attributes. A random selection of tire models was tested, consisting of: 108 all-season, 23 studless winter, and 5 all-weather tire models. All test results were blinded for the purpose of confidentiality. Tire rolling resistance coefficients were measured using the single point ISO 28580 standard, and wet grip index values were measured according to UN-ECE Reg.117. Rolling resistance and wet grip indicators were measured using dynamic mechanical analysis (DMA).
Technical Paper

Comparison of Pollutant Emissions from Common Platform Vehicles Operating on Alternative Fuels over a Range of Driving Cycles at Standard and Cold Ambient Temperatures

2016-10-17
2016-01-2216
Alternative fuels and power trains are expected to play an important role in reducing emissions of greenhouse gases (GHGs) and other pollutants. In this study, five light-duty vans, operating on alternative fuels and propulsion systems, were tested on a chassis dynamometer for emissions and efficiency. The vehicles were powered with Tier 2 gasoline, low blend ethanol (E10), compressed natural gas (CNG), liquefied petroleum gas (LPG), and an electric battery. Four test cycles were used representing city driving and cold-start (FTP-75), aggressive high speed driving (US06), free flow highway driving (HWFCT), and a combination of urban, rural, and motorway driving (WHVC). Tests were performed at a temperature of 22°C, with select tests at -7°C and -18°C. Exhaust emissions were measured and characterized including CO, NOX, THC, PM and CO2. On the FTP-75, WHVC, and US06 cycles additional exhaust emission characterization included N2O, and CH4.
Technical Paper

Tailpipe Emissions and Fuel Economy for 2WD Vehicles and AWD Vehicles Tested on a Double-Axle Chassis Dynamometer: A Comparative Study

2016-10-17
2016-01-2354
Tailpipe emissions, fuel consumption, and wheel torque data were measured for three pairs of vehicles tested over four drive cycles at the Emissions Research and Measurement Section of Environment and Climate Change Canada in Ottawa, Ontario. Each pair of vehicles included identical vehicle models; one vehicle was equipped with an AWD drivetrain and one vehicle was equipped with a FWD drivetrain. The AWD vehicle was tested on a double-axle chassis dynamometer. The amount of AWD activity was heavily dependent on driving behavior and AWD system design. During periods of torque delivery, the percentage of AWD activity ranged between 32% and 57% for the FTP-75 drive cycle, between 3% and 8% for the HWFCT drive cycle, and between 21% and 29% for the US06 drive cycle. The fourth drive cycle was the FTP-75 driven at -7°C. AWD distributions did not show sensitivity to temperature for the first and second vehicle models.
Technical Paper

Simplified Methodology for Modeling Cold Temperature Effects on Engine Efficiency for Hybrid and Plug-in Hybrid Vehicles

2010-10-25
2010-01-2213
For this work, a methodology of modeling and predicting fuel consumption in a hybrid vehicle as a function of the engine operating temperature has been developed for cold ambient operation (-7°C, 266°K). This methodology requires two steps: 1) development of a temperature dependent engine brake specific fuel consumption (BSFC) map, and, 2) a data-fitting technique for predicting engine temperature to be used as an input to the temperature dependent BSFC maps. For the first step, response surface methodology (RSM) techniques were applied to generate brake specific fuel consumption (BSFC) maps as a function of the engine thermal state. For the second step, data fitting techniques were also used to fit a simplified lumped capacitance heat transfer model using several experimental datasets. Utilizing these techniques, an analysis of fuel consumption as a function of thermal state across a broad range of engine operating conditions is presented.
Technical Paper

The Effect of Driving Conditions and Ambient Temperature on Light Duty Gasoline-Electric Hybrid Vehicles (1): Particulate Matter Emission Rates and Size Distributions

2007-09-01
2007-01-2136
Gasoline-electric hybrid vehicle technology has been gaining widespread acceptance and has the potential to reduce emissions through reduced fuel consumption. In this study, particulate matter number and mass emission rates, organic and elemental carbon compositions, and number-based size distributions were measured from four gasoline-electric hybrid vehicles (2005 Ford Escape Hybrid, 2004 Toyota Prius, 2003 Honda Civic Hybrid, and 2000 Honda Insight). In addition, one small conventional gasoline vehicle (2002 SmartCar) was tested. The vehicles were driven over five driving cycles and at steady-state speeds of 40 and 80 km/h. Each test was performed at 20°C and at -18°C. Testing took place at the Environmental Science & Technology Centre of Environment Canada using conventional chassis dynamometer procedures. Average distance based emission rates are given for each vehicle under each test condition.
Technical Paper

The Effect of Driving Conditions and Ambient Temperature on Light Duty Gasoline-Electric Hybrid Vehicles (2): Fuel Consumption and Gaseous Pollutant Emission Rates

2007-09-01
2007-01-2137
Fuel consumption and gaseous emission data (CO, NOx, THC, and CO2) are reported for four commercially available gasoline-electric hybrid vehicles and one conventional gasoline vehicle tested on a chassis dynamometer over five transient driving cycles (LA4, LA92, HWFET, NYCC, US06), and two steady state modes (40 and 80 km/h), at two ambient temperatures (20 °C, and -18 °C). All vehicles exhibited higher fuel consumption during transient cycles compared to steady-state modes. Cold ambient temperature had a more detrimental effect on fuel consumption rates of the hybrid vehicles compared to those of the conventional gasoline vehicle.
X