Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Journal Article

Comparing Dolly Rollover Testing to Steer-Induced Rollover Events for an Enhanced Understanding of Off-Road Rollover Dynamics

2011-04-12
2011-01-1112
The field of motor vehicle rollover research and testing has been one of multiple and varied approaches, dating back to at least the 1930's. The approach has been as simple as tipping a vehicle over at the top of a steep hill ( Wilson et al., 1972 ), to as complex as releasing a vehicle from an elevated roll spit mounted to the rear of a moving tractor and trailer ( Cooper et al., 2001 and Carter et al., 2002 ). Between these extremes exists numerous other rollover initiation methods, including driving a vehicle into a ramp, sliding a vehicle sideways into soil or a curb-like obstruction, launching or releasing a vehicle from a dolly cart, and remotely steering a moving vehicle into an orientation that will produce a rollover event ( Cooperrider et al., 1990 and Larson et al., 2000 ).
Journal Article

Measurement and Modeling of Rollover Airborne Trajectories

2009-04-20
2009-01-0109
Much has been written about reconstruction techniques and testing methods concerning vehicle rollovers. To date, most of the literature describes rollovers as one-dimensional events. Rollovers account for a disproportionate fraction of serious injuries and fatalities among all motor vehicle accidents. The three-dimensional nature of rollover sequences in which a rolling vehicle experiences multiple ground contacts contributes to the environment where such injuries occur. An analytical technique is developed to model the airborne segments of a rollover sequence as a parabolic path of the vehicle center of gravity. A formulation for the center of gravity descent from maximum elevation to full ground contact is developed. This formulation contains variables that may be readily determined from a thorough reconstruction. Ultimately, this formulation will also provide a vertical ground impact velocity at contact.
Journal Article

Rollover Crash Tests on Dirt: An Examination of Rollover Dynamics

2008-04-14
2008-01-0156
Most rollover literature is statistical in nature, focuses on reconstructed field data and experiences, or utilizes a very broad pool of dissimilar test data. When test data is presented, nearly all of it involves hard surface rollover tests performed at speeds near 30 mph, with a mix of passenger cars, sport utility vehicles and minivans. Five full-scale dolly rollover tests on dirt of production sport utility vehicles (SUV) and multi-purpose vehicles (MPV) were performed with similar input parameters. The similarities included Federal Motor Vehicle Safety Standard (FMVSS) 208 rollover dolly initiated events, level dirt rollover surfaces, and initiation speeds over 40 mph. All tests were recorded with multiple high-speed and real-time cameras. Additionally, some of the tests included detailed documentation of the rollover surface and the resulting evidence and debris patterns, as well as onboard angular rate sensing instrumentation.
Journal Article

Rollover Dynamics: An Exploration of the Fundamentals

2008-04-14
2008-01-0172
Research focusing on automotive rollovers has garnered a great deal of attention in recent years. Substantial effort has been directed toward the evaluation of rollover resistance. Issues related to crashworthiness, such as roof strength and restraint performance, have also received a great deal of attention. Much less research effort has been directed toward a more detailed study of the rollover dynamics from point-of-trip to point-of-rest. The reconstruction of rollover crashes often requires a thorough examination of the events taking place between point-of-trip and point-of-rest. Increasing demands are placed on reconstructionists to provide greater levels of detail regarding the roll sequence. Examples include, but are not limited to, roll rates at the quarter-roll level, CG trajectory (horizontal and vertical), roll angle at impact, and ground contact velocity. Often the detail that can be provided in a rollover reconstruction is limited by a lack of physical evidence.
Technical Paper

Seat Belt Entanglement in Rollover Accidents: Physical Evidence and Occupant Kinematics

2008-04-14
2008-01-1237
In rollover accidents, physical evidence of seat belt usage is occasionally difficult to discern. Typically, if a seat belt is used by an occupant in an accident, various seat belt components will display characteristic marks in well-defined locations. These marks are known as “witness marks” or “occupant load marks.” Witness marks in a rollover accident may be faint in comparison to those caused by the occupant restraint forces in high-energy planar collisions. Additionally, in situations where a seat belt buckle is alleged to have unlatched early in a rollover accident, the lack of clear occupant load marks may in some cases be attributed to an alleged “buckle release” that occurred very early in the rollover sequence, so that the seat belt did not sustain loading while in a latched condition.
Technical Paper

An Evaluation of Laminated Side Window Glass Performance During Rollover

2007-04-16
2007-01-0367
In this study, the occupant containment characteristics of automotive laminated safety glass in side window applications was evaluated through two full-scale, full-vehicle dolly rollover crash tests. The dolly rollover crash tests were performed on sport utility vehicles equipped with heat-strengthened laminated safety glass in the side windows in order to: (1) evaluate the capacity of laminated side window safety glass to contain unrestrained occupants during rollover, (2) analyze the kinematics associated with unrestrained occupants during glazing interaction and ejection, and (3) to identify laminated side window safety glass failure modes. Dolly rollovers were performed on a 1998 Ford Expedition and a 2004 Volvo XC90 at a nominal speed of 43 mph, with unbelted Hybrid II Anthropomorphic Test Devices (ATDs) positioned in the outboard seating positions.
Technical Paper

Theoretical Analysis of a Method of Computing Dynamic Roof Crush During Rollovers

2007-04-16
2007-01-0366
A method of computing dynamic roof crush in rollover accidents has been proposed (Bidez, et al., 2005; Cochran et al., 2005). The method used data obtained from accelerometers mounted to the roof rails of sport utility vehicles, along with other measurements, to compute the instantaneous deformation of the roof rails during dolly rollover crash tests. We examined the feasibility and practicality of this methodology in three ways. First, the theoretical derivation was examined. Errors appeared to have been made in deriving and/or interpreting the equations used to compute instantaneous roof crush. Next, a three-dimensional dynamic rollover simulation program was run to produce ideal acceleration data (Yamaguchi et al., 2006, 2005). Using these data, the equations in original, uncorrected form predicted dynamic roof deformations when none existed. When the equations were corrected, the simulation data yielded proper roof positions and no roof deformations.
Technical Paper

Trajectory Model of Occupants Ejected in Rollover Crashes

2007-04-16
2007-01-0742
A simple two-dimensional particle model was developed to predict the airborne trajectory, landing point, tumbling distance, and rest position of an occupant ejected in a rollover crash. The ejected occupant was modeled as a projectile that was launched tangentially at a given radius from the center of gravity of the vehicle. The landing and tumbling phases of the ejection were modeled assuming a constant coefficient of friction between the occupant and the ground. Model parameters were optimized based on a dolly rollover test of a 1998 Ford Expedition in which five unbelted anthropomorphic test devices (ATDs) were completely ejected. A generalized vehicle dynamics model was also created assuming a constant translational deceleration and a prescribed roll rate function. Predictions using the generalized model were validated against the results of the full-scale rollover test to estimate the expected error when using the model in a real world situation.
X