Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Progress in Rotorcraft Icing Computational Tool Development

2015-06-15
2015-01-2088
The formation of ice over lifting surfaces can affect aerodynamic performance. In the case of helicopters, this loss in lift and the increase in sectional drag forces will have a dramatic effect on vehicle performance. The ability to predict ice accumulation and the resulting degradation in rotor performance is essential to determine the limitations of rotorcraft in icing encounters. The consequences of underestimating performance degradation can be serious and so it is important to produce accurate predictions, particularly for severe icing conditions. The simulation of rotorcraft ice accretion is a challenging multidisciplinary problem that until recently has lagged in development over its counterparts in the fixed wing community. But now, several approaches for the robust coupling of a computational fluid dynamics code, a rotorcraft structural dynamics code and an ice accretion code have been demonstrated.
Technical Paper

Oscillating Airfoil Icing Tests in the NASA Glenn Research Center Icing Research Tunnel

2011-06-13
2011-38-0016
A team from the USA rotorcraft industry, NASA, and academia was established to create a validated high-fidelity computational fluid dynamics (CFD) icing tool for rotorcraft. Previous work showed that an oscillating blade with a periodic variation in angle of attack causes changes in the accreted ice shape and this makes a significant change in the airfoil drag. Although there is extensive data for ice accumulation on a stationary airfoil section, high-quality icing-tunnel data on an oscillating airfoil is scarce for validating the rotorcraft icing problem. In response to this need, a two-dimensional (2D) oscillating airfoil icing test was recently performed in the Icing Research Tunnel at the NASA Glenn Research Center. Three leading-edge specimens for an existing 15-inch chord test apparatus were designed and instrumented to provide the necessary data for the CFD code validation.
Technical Paper

Calculations of Ice Shapes on Oscillating Airfoils

2011-06-13
2011-38-0015
The desire to operate rotorcraft in icing conditions has renewed the interest in developing high-fidelity analysis methods to predict ice accumulation and the ensuing rotor performance degradation. A subset of providing solutions for rotorcraft icing problems is predicting two-dimensional ice accumulation on rotor airfoils. While much has been done to predict ice for fixed-wing airfoil sections, the rotorcraft problem has two additional challenges: first, rotor airfoils tend to experience flows in higher Mach number regimes, often creating glaze ice which is harder to predict; second, rotor airfoils oscillate in pitch to produce balance across the rotor disk. A methodology and validation test cases are presented to solve the rotor airfoil problem as an important step to solving the larger rotorcraft icing problem. The process couples Navier-Stokes CFD analysis with the ice accretion analysis code, LEWICE3D.
Technical Paper

Ice Accretion Prediction on Helicopter Rotor Blade in Hover Flight

2007-09-24
2007-01-3309
In the present work, numerical results of ice accretion prediction on the UH-1H helicopter rotor blade with a NACA 0012 airfoil are reported. During the winter of 1982-83, the NASA Lewis Research Center and the US Army conducted a helicopter icing flight test (HIFT) program using a UH-1H aircraft at the Canadian National Research Council spray rig at Uplands Airport, Ottawa, Canada. From several hover icing flight conditions conducted in the HIFT program, a test case is selected to be evaluated with numerical analysis. The computation is performed at an airspeed of 4.6 m/s, ambient temperature of -19.0°C, liquid water content of 0.7 g/m3 and an exposure time of 3 minutes. In order to reproduce the experimental aerodynamic conditions the three-dimensional flow field is numerically computed. Both a two-dimensional and three-dimensional approach is followed to predict the ice shape.
X