Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Feasibility Study of a New Test Procedure to Identify High Emitters of Particulate Matter during Periodic Technical Inspection

2019-04-02
2019-01-1190
The Diesel Particulate Filter (DPF) is the most effective way to reduce particulate matter emissions from diesel vehicles and is fitted on every passenger car since the EURO5 emission standard. Unfortunately, this essential after-treatment device can be damaged over time or could be defective from the manufacturing, negatively impacting its filtration efficiency. It is also sometimes illegally removed. Today in Europe, the presence and effectiveness of the DPF cannot be determined at the Periodic Technical Inspection (PTI), during which an opacity measurement of the exhaust gases is performed during a free acceleration test. Therefore, this work presents the results of the feasibility study of a new test procedure using devices measuring a particulate matter concentration (PN). The test consists of a PN measurement at low idle, which shows good correlation with NEDC PN emissions.
Technical Paper

Ammonia-Hydrogen Blends in Homogeneous-Charge Compression-Ignition Engine

2017-09-04
2017-24-0087
Ammonia and hydrogen can be produced from water, air and excess renewable electricity (Power-to-fuel) and are therefore a promising alternative in the transition from fossil fuel energy to cleaner energy sources. An Homogeneous-Charge Compression-Ignition (HCCI) engine is therefore being studied to use both fuels under a variable blending ratio for Combined Heat and Power (CHP) production. Due to the high auto-ignition resistance of ammonia, hydrogen is required to promote and stabilize the HCCI combustion. Therefore the research objective is to investigate the HCCI combustion of varying hydrogen-ammonia blending ratios in a 16:1 compression ratio engine. A specific focus is put on maximizing the ammonia proportion as well as minimizing the NOx emissions that could arise from the nitrogen contained in the ammonia. A single-cylinder, constant speed, HCCI engine has been used with an intake pressure varied from 1 to 1.5 bar and with intake temperatures ranging from 428 to 473 K.
Journal Article

Simulations of Advanced Combustion Modes Using Detailed Chemistry Combined with Tabulation and Mechanism Reduction Techniques

2012-04-16
2012-01-0145
Multi-dimensional models represent today consolidated tools to simulate the combustion process in HCCI and diesel engines. Various approaches are available for this purpose, it is however widely accepted that detailed chemistry represents a fundamental prerequisite to obtain satisfactory results when the engine runs with complex injection strategies or advanced combustion modes. Yet, integrating such mechanisms generally results in prohibitive computational cost. This paper presents a comprehensive methodology for fast and efficient simulations of combustion in internal combustion engines using detailed chemistry. For this purpose, techniques to tabulate the species reaction rates and to reduce the chemical mechanisms on the fly have been coupled.
Technical Paper

Study of the HCCI Running Zone Using Ethyl Acetate

2009-04-20
2009-01-0297
HCCI mode has shown its potential to improve emissions and efficiency in internal combustion engines. In addition, it has open the possibility to use a wider range of fuels than in SI and CI engines. However, the engine running zone is still one of the main challenges that HCCI has to face. We have investigated this zone in the case of ethyl acetate using CFD simulations with a simplified combustion mechanism. This paper describes how ethyl acetate influences the running zone of HCCI engines compared to iso-octane. Biochemical conversion of fermentable biomass can produce large quantities of esters by the reaction of ethanol with volatile organic acids. Among them, ethyl acetate has a low vaporization temperature and a high auto-ignition temperature. Preliminary experiments on SI engines have shown that it ignites more slowly than gasoline even if their physical properties are similar.
X