Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

Effect of Engine Oil Heater Using EGR on the Fuel Economy and NOx Emission of a Full Size Sedan during Cold Start

2016-04-05
2016-01-0656
In cold start driving cycles, high viscosity of the lubrication oil (engine oil) increases the mechanical friction losses compared with warmed up condition. Thus, an engine oil warm up system can provide the opportunity to reduce the mechanical friction losses during cold start. In this study, an engine oil heater using EGR is used for the fast warm up of the engine oil. This paper presents the effect of the engine oil heater on the fuel economy and emissions over a driving cycle (NEDC). A numerical model is developed to simulate the thermal response of the powertrain using multi-domain 1-D commercial powertrain simulation software (GT-Suite) and it is calibrated using test data from a full size sedan equipped with a 2.0L diesel engine. The model consists of an engine model, coolant circuit model, oil circuit model, engine cooling model, friction model, and ECU model.
Technical Paper

Design Optimization of Alternator and Battery Systems with a Recuperation Control Algorithm for a Mid-Sized Sedan

2015-04-14
2015-01-1188
The fuel economy of a vehicle can be improved by recuperating the kinetic energy when the vehicle is decelerated. However, if there is no electrical traction component, the recuperated energy can be used only by the other electrical systems of the vehicle. Thus, the fuel economy improvement can be maximized by balancing the recuperated energy and the consumed energy. Also, suitable alternator and battery management is required to maximize the fuel economy. This paper describes a design optimization process of the alternator and battery system equipped with recuperation control algorithms for a mid-sized sedan based on the fuel economy and system cost. A vehicle model using AVL Cruise is developed for cycle simulations and validated with experimental data. The validated model is used for the parametric study and design optimization of the alternator and battery systems with single and dual energy storage.
Technical Paper

Study on the Application of the Waste Heat Recovery System to Heavy-Duty Series Hybrid Electric Vehicles

2013-04-08
2013-01-1455
A waste heat recovery system is applied to a heavy-duty series hybrid electric vehicle. The engine in a series hybrid electric vehicle can operate at steady state for most of the time because the engine and drivetrain are decoupled, providing the waste heat recovery system with a steady state heat source. Thus, it is possible to optimize the waste heat recovery system design while maximizing the amount of useful energy converted in the system. To realize such a waste heat recovery system, the Rankine steam cycle is selected for the bottoming cycle. The heat exchanger is implemented as a quasi-1D simulation model to calculate the accurate quantity of recovered energy and to determine the working fluid state. The optimal geometric characteristics of the heat exchanger and the efficiency are considered according to the working fluid. The Rankine steam cycle model is constructed, and the output power is calculated.
Technical Paper

Numerical Modeling and Simulation of the Vehicle Cooling System for a Heavy Duty Series Hybrid Electric Vehicle

2008-10-06
2008-01-2421
The cooling system of Series Hybrid Electric Vehicles (SHEVs) is more complicated than that of conventional vehicles due to additional components and various cooling requirements of different components. In this study, a numerical model of the cooling system for a SHEV is developed to investigate the thermal responses and power consumptions of the cooling system. The model is created for a virtual heavy duty tracked SHEV. The powertrain system of the vehicle is also modeled with Vehicle-Engine SIMulation (VESIM) previously developed by the Automotive Research Center at the University of Michigan. VESIM is used for the simulation of powertrain system behaviors under three severe driving conditions and during a realistic driving cycle. The output data from VESIM are fed into the cooling system simulation to provide the operating conditions of powertrain components.
X