Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Survey of American and Canadian Consumer Experience - The Performance of Late Model Year Vehicles Operating on Gasoline With and Without the Gasoline Fuel Additive MMT®

2006-10-16
2006-01-3405
This paper presents the results of a three city survey designed to determine the relative frequency of illumination of vehicle on-board diagnostic (OBD) malfunction indicator lights (MIL) on 2001 and later model year vehicles. The survey was conducted in a Canadian market, Regina, and two U.S. markets, Minneapolis and Denver, to assess claims that the presence of methycyclopentadienyl manganese tricarbonyl (MMT®) in gasoline causes the failure of technology necessary to meet stringent Tier 2 emission standards applicable in North America. The results of the survey do not support the claim that MMT® is incompatible with the effective functioning of the advanced vehicle emission technology necessary to meet Tier 2 emission standards. The results substantiate that the performance of the most advanced vehicles operating on gasoline containing MMT® is not materially different from the performance of comparable vehicles operating on gasoline that does not contain MMT®.
Technical Paper

Analysis of Nitrous Oxide Emissions from Light Duty Passenger Cars

2000-06-19
2000-01-1952
Greenhouse gas emissions (GHG) from light-duty vehicles have received attention recently because of increased focus on global warming and climate change. Relative to emissions of regulated pollutants like hydrocarbons and nitrogen oxides, nitrous oxide (N2O) emissions from all vehicles are generally very low. However, N2O is a powerful greenhouse gas, and small emissions of N2O can contribute substantially to total GHG inventories. Two fleets of different vehicle models, both meeting the current US Tier 1 emission standard, were evaluated in an effort to develop a better understanding of N2O emissions from modern three-way catalyst-equipped vehicles. Nine 1997 Ford Crown Victoria vehicles operating on clean-burning US Federal Phase 2 Reformulated Gasolines were assessed over 60,000 miles. For additional comparison, testing was also conducted with catalysts from six 1994 Toyota Camry vehicles, which had previously undergone 110,000 miles of controlled mileage accumulation.
Technical Paper

Assessing High-Cell Density Catalyst Durability with MMT® Fuel Additive in Severe Driving Conditions

2005-10-24
2005-01-3840
This report describes the results of a fleet test conducted with vehicles certified to Euro IV standards and equipped with high cell density close coupled manifold mounted catalysts. The purpose of the test was to determine the effect of MMT® on vehicle emission system durability under severe in-service operating conditions and to address vehicle manufacturers concerns about the effects of MMT® in advanced technology vehicles. The results clearly show that performance and durability of the vehicles are not affected even under severe operating conditions when MMT® is used in the gasoline. Two pairs each of Volkswagen Passats and Opel Corsas (eight vehicles total) were operated on a base fuel and a base fuel splash blended with MMT® at a concentration of 18 milligrams manganese per liter (“mg Mn/l”). The vehicles accumulated mileage on a driving regime representative of severe service.
Technical Paper

Evaluation of Factors Affecting Vehicle Emission Compliance Using Regional Inspection and Maintenance Program Data

2006-10-16
2006-01-3406
In-use vehicle regional inspection and maintenance (I/M) programs in the United States (US) and Canada generate a tremendous volume of data that provides a means for evaluating vehicle emissions compliance in actual consumer use. In this study, IM240 test data for several 1996 to 2001 vehicle models are analyzed from different regional programs in the US and Canada to confirm the suitability of using these data for evaluation of vehicles equipped with advanced emission control technology and to examine the various potential factors responsible for emissions noncompliance. Relative comparisons between US and Canadian program data are made for vehicle models used in the Alliance of Automobile Manufacturers (AAM) MMT® Test Program to examine the potential impact of differences in fuel properties on consumer experience and vehicle compliance.
Journal Article

Proof-of-Principle Investigation into the Use of Custom Rapid Aging Procedures to Evaluate and Demonstrate Catalyst Durability

2010-10-25
2010-01-2269
The application of accelerated catalyst aging procedures on an engine dynamometer test bed for the purpose of demonstrating catalyst durability is examined. A proof-of-principle approach is followed using catalysts from vehicles certified to U.S. Tier 2 Bin 4 and California SULEV 2 levels. Accelerated durability demonstration methods based upon conventional fuel cut cycles were employed to age catalysts to levels predicted by quantification of thermal catalyst bed severity on the Standard Road Cycle (SRC) relative to the fuel cut aging cycle using the Bench Aging Time (BAT) equation. Emissions deterioration on the accelerated aging cycle is compared to the automobile manufacturers' certification values and to whole vehicle emissions performance results from several different in-use vehicle fleets. The influence of technology on whole vehicle emissions levels and deterioration characteristics is also evaluated.
Technical Paper

The Interaction of MMT® Combustion Products with the Exhaust Catalyst Face

2007-04-16
2007-01-1078
Since the introduction of the catalytic converter, some automobile manufacturers have questioned whether the converter is compatible with the use of the gasoline fuel additive MMT®. Concerns have generally revolved around possible interactions between combustion products of MMT® (i.e., manganese containing compounds) and catalytic converters. In particular, concern has been raised over the possibility that MMT® combustion products physically “plug” the catalyst and cause catalyst failure, where plugging refers to blockage of contiguous pores at the catalyst inlet face or within the body of the converter. In modern vehicles this could result in the illumination of the malfunction indicator light (MIL) due to storing of an on-board diagnostic (OBD) failure code pertaining to catalyst operation or failure of a vehicle inspection and maintenance (I/M) test.
X