Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Flexible Hardware-in-the-Loop Testing System for Hybrid Powertrain

2015-04-14
2015-01-0586
Ever increasing requirements for vehicle performance, fuel economy and emissions have been driving the development and adoption of various types of hybrid powertrains. There are many different configurations of hybrid powertrains, which may include such components as engine, generator and inverter, battery pack, ultracapacitor, traction motor and inverter, transmission, and various control units. A hardware-in-the loop (HiL) testing solution that is flexible enough to accommodate different types of hybrid powertrain configurations and run a range of test scenarios is needed to support on-going development activities in this field. This paper describes the design and implementation of such a HiL testing system. The system is centered on a high performance, real-time controller that runs powertrain, driveline, vehicle, and driver models.
Technical Paper

Automatic Tuning of Two-Degree-of-Freedom PID Control for Engine Electronic Throttle System

2010-04-12
2010-01-0156
Engine Electronic Throttle Control (ETC) systems are gaining success in high volume applications. This system helps to improve overall engine and vehicle performance, as well as facilitate the function integration of related control features. The requirement for an ETC system is that it fulfills the commanded throttle plate opening as quickly and accurately as possible. Because of nonlinearity of the electronic throttle system, gain-scheduled control is often used. A method to automatically tune the control for each operating region is needed. In this paper the engine electronic throttle is considered as having dominant linear dynamics for each operating region. A Two-Degree-of-Freedom (2-DOF) PID controller and a method of using Model Reference Adaptive Control (MRAC) algorithm to automatically tune the PID control gains are designed.
Technical Paper

Development of an Engine-in-the-loop Vehicle Simulation System in Engine Dynamometer Test Cell

2009-04-20
2009-01-1039
To meet the ever increasing requirements for engines and vehicles in the areas of performance, fuel economy, emission, and meanwhile reduce product development time, Hardware-in-the-loop (HIL) simulation is increasingly used in automotive control system development. Engine-in-the-loop (EIL) vehicle simulation, which is a specific form of HIL simulation, is an approach in which a physical engine (together with its control unit) is coupled to virtual vehicle and driver models through a high power, low inertia engine dynamometer in the engine test cell environment. EIL can be used to perform powertrain control development, as well as engine and vehicle performance evaluation. Because of its advantages in repeatability and flexibility etc., especially for transient operating mode study, EIL has become a powerful tool and will be more widely used in the near future. Design and implementation of an EIL vehicle simulation system is described.
Technical Paper

Optimization of PID Control for Engine Electronic Throttle System Using Iterative Feedback Tuning

2009-04-20
2009-01-0370
The Electronic Throttle Control (ETC) system is more and more used and increasingly becoming a standard part of the engine. It controls the amount of air intake into the cylinders by precisely positioning the throttle plate at the desired opening. An ETC system provides the possibility of improving the overall engine and vehicle performance because with such a mechanism, the engine controller can decide and set the throttle position not only based on driver intention, but also taking into consideration the specific engine operation mode information, such as safety factors, emission constraints, etc. After the throttle position target is determined, the requirement for the ETC system is that the throttle plate should achieve the commanded position as accurately and as quickly as possible. In many cases the controller is designed by first establishing a model of the electronic throttle system using experimental identification.
X