Criteria

Text:
Author:
Display:

Results

Viewing 1 to 30 of 55
2018-04-03
Technical Paper
2018-01-0210
Toby Rockstroh, Christopher P. Kolodziej, Mads C. Jespersen, S. Scott Goldsborough, Thomas Wallner
Of late there has been a resurgence in knock studies investigating parameters that quantify knock in both standardized platforms and modern spark-ignition engines. However, it is still unclear how metrics such as knock rating, knock onset and knock intensity are related, and how fuels behave according to these metrics across a range of conditions. As part of an ongoing study, a Cooperative Fuel Research (CFR) engine was modified to allow mild levels of intake air boosting while staying true to its intended purpose of being the standard device for ASTM-specified knock rating, or octane number tests. The engine was equipped with in-cylinder pressure transducers to enable both, logging of standard knock meter read-out, as well as state-of-the-art indicated data.
2018-04-03
Technical Paper
2018-01-0198
Riccardo Scarcelli, Anqi Zhang, Thomas Wallner, Douglas Breden, Anand Karpatne, Laxminarayan Raja, Isaac Ekoto, Benjamin Wolk
While the spark-ignition (SI) engine technology migrates towards challenging combustion regimes (dilute and boosted operation), advanced ignition technologies generating non-equilibrium types of plasma have continued to receive significant attention from the automotive industry as a potential replacement for conventional spark-plugs. However there are no models currently that can describe the non-thermal plasma ignition process in the computational fluid dynamics (CFD) codes that are widely used in the engine multi-dimensional modeling community. A key question for the engine modelers that are trying to describe the non-equilibrium ignition physics concerns the characteristics of the non-equilibrium plasma. A key challenge is represented by the plasma formation timescale (nanoseconds) that can hardly be resolved within a full engine cycle (milliseconds) simulation.
2018-04-03
Technical Paper
2018-01-0848
Seungmok Choi, Christopher Kolodziej, Thomas Wallner, Alexander Hoth
CFR engine is the widely accepted platform to test standard Research Octane Number (RON) and Motored Octane Number (MON) for determining anti-knock characteristics of motor fuels. With increasing interests in engine downsizing and alternative fuels for modern spark ignition (SI) engines, discussions about new metric to evaluate fuel anti-knock characteristics using the CFR engine are underway. To take into account additional factors, such as fuel heat of vaporization (HoV) and laminar flame speed (LFS), and understand their impacts on knocking, it is essential to estimate accurate in-cylinder conditions. In this study, the CFR engine is modelled using GT-Power with the Three Pressure Analysis (TPA) and the model is validated for different fuels and engine conditions. The finite element cylinder model is applied to better estimate heat transfer and cylinder wall temperatures of the cast iron chamber of CFR engine under continuous knocking operation.
2017-03-28
Technical Paper
2017-01-0661
Michael Pamminger, James Sevik, Riccardo Scarcelli, Thomas Wallner, Carrie Hall
Abstract Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5.
2017-03-28
Journal Article
2017-01-0671
Christopher P. Kolodziej, Michael Pamminger, James Sevik, Thomas Wallner, Scott W. Wagnon, William J. Pitz
Abstract Previous studies have shown that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flame speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed.
2016-10-17
Journal Article
2016-01-2293
Michael Pamminger, James Sevik, Riccardo Scarcelli, Thomas Wallner, Steven Wooldridge, Brad Boyer, Carrie M. Hall
Abstract The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas.
2016-10-17
Journal Article
2016-01-2364
James Sevik, Michael Pamminger, Thomas Wallner, Riccardo Scarcelli, Brad Boyer, Steven Wooldridge, Carrie Hall, Scott Miers
Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions.
2016-10-17
Technical Paper
2016-01-2312
Mateos Kassa, Carrie Hall, Andrew Ickes, Thomas Wallner
Abstract This study examines the dynamics and control of an engine operated with late intake valve closure (LIVC) timings in a dual-fuel combustion mode. The engine features a fuel delivery system in which diesel is direct-injected and natural gas is port-injected. Despite the benefits of LIVC and dual-fuel strategy, combining these two techniques resulted in efficiency losses due to the variability of the combustion process across cylinders. The difference in power production across cylinders ranges from 9% at an IVC of 570°ATDC* to 38% at an IVC of 620 °ATDC and indicates an increasingly uneven fuel distribution as the intake valve remains open longer in the compression stroke. This paper describes an approach for controlling the amount of fuel injected into each cylinders’ port of an inline six- cylinder heavy-duty dual-fuel engine to minimize the variations in fuel distribution across cylinder.
2016-10-17
Technical Paper
2016-01-2169
Carrie M. Hall, James Sevik, Michael Pamminger, Thomas Wallner
Abstract The high octane rating and more plentiful domestic supply of natural gas make it an excellent alternative to gasoline. Recent studies have shown that using natural gas in dual fuel engines provides one possible strategy for leveraging the advantages of both natural gas and gasoline. In particular, such engines been able to improve overall engine efficiencies and load capacity when they leverage direct injection of the natural gas fuel. While the benefits of these engine concepts are still being explored, differences in fuel composition, combustion process and in-cylinder mixing could lead to dramatically different emissions which can substantially impact the effectiveness of the engine’s exhaust aftertreatment system. In order to explore this topic, this study examined the variations in speciated hydrocarbon emissions which occur for different fuel blends of E10 and compressed natural gas and for different fuel injection strategies on a spark-ignition engine.
2016-04-05
Journal Article
2016-01-0776
Mateos Kassa, Carrie Hall, Andrew Ickes, Thomas Wallner
Abstract Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode featuring a port-injection and a direct-injection fueling system in order to improve fuel efficiency and engine performance. Experimental results show increased cylinder-to-cylinder variation in IMEP as IVC timing moves from 570°ATDC to 610°ATDC, indicating an increasingly uneven fuel distribution between cylinders.
2016-04-05
Technical Paper
2016-01-0850
Lorenzo Bartolucci, Riccardo Scarcelli, Thomas Wallner, Andrew Swantek, Christopher F. Powell, Alan Kastengren, Daniel Duke
Abstract Using natural gas in an internal combustion engine (ICE) is emerging as a promising way to improve thermal efficiency and reduce exhaust emissions. In the development of such engine platforms, computational fluid dynamics (CFD) plays a fundamental role in the optimization of geometries and operating parameters. One of the most relevant issues in the simulation of direct injection (DI) gaseous processes is the accurate prediction of the gas jet evolution. The simulation of the injection process for a gaseous fuel does not require complex modeling, nevertheless properly describing high-pressure gas jets remains a challenging task. At the exit of the nozzle, the injected gas is under-expanded, the flow becomes supersonic and shocks occur due to compressibility effects. These phenomena lead to challenging computational requirements resulting from high grid resolution and low computational time-steps.
2016-04-05
Journal Article
2016-01-0806
James Sevik, Michael Pamminger, Thomas Wallner, Riccardo Scarcelli, Ronald Reese, Asim Iqbal, Brad Boyer, Steven Wooldridge, Carrie Hall, Scott Miers
Abstract Interest in natural gas as a fuel for light-duty transportation has increased due to its domestic availability and lower cost relative to gasoline. Natural gas, comprised mainly of methane, has a higher knock resistance than gasoline making it advantageous for high load operation. However, the lower flame speeds of natural gas can cause ignitability issues at part-load operation leading to an increase in the initial flame development process. While port-fuel injection of natural gas can lead to a loss in power density due to the displacement of intake air, injecting natural gas directly into the cylinder can reduce such losses. A study was designed and performed to evaluate the potential of natural gas for use as a light-duty fuel. Steady-state baseline tests were performed on a single-cylinder research engine equipped for port-fuel injection of gasoline and natural gas, as well as centrally mounted direct injection of natural gas.
2016-04-05
Technical Paper
2016-01-0794
Reed Hanson, Andrew Ickes, Thomas Wallner
Abstract Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve high efficiency combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions. A key requirement for extending to high-load operation is reduce the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Natural gas/diesel RCCI engine operation is compared over the EPA Heavy-Duty 13 mode supplemental emissions test with and without EGR.
2016-04-05
Technical Paper
2016-01-0609
Anqi Zhang, Riccardo Scarcelli, Seong-Young Lee, Thomas Wallner, Jeffrey Naber
Abstract It is beneficial but challenging to operate spark-ignition engines under highly lean and dilute conditions. The unstable ignition behavior can result in downgraded combustion performance in engine cylinders. Numerical approach is serving as a promising tool to identify the ignition requirements by providing insight into the complex physical/chemical phenomena. An effort to simulate the early stage of flame kernel initiation in lean and dilute fuel/air mixture has been made and discussed in this paper. The simulations are set to validate against laboratory results of spark ignition behavior in a constant volume combustion vessel. In order to present a practical as well as comprehensive ignition model, the simulations are performed by taking into consideration the discharge circuit analysis, the detailed reaction mechanism, and local heat transfer between the flame kernel and spark plug.
2016-04-05
Journal Article
2016-01-0640
Alan Kastengren, Daniel Duke, Andrew Swantek, James Sevik, Katarzyna Matusik, Thomas Wallner, Christopher F. Powell
Abstract Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
2016-04-05
Technical Paper
2016-01-0593
Riccardo Scarcelli, Keith Richards, Eric Pomraning, P. K. Senecal, Thomas Wallner, James Sevik
Abstract Reynolds-averaged Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result for the majority of turbulent flows. This could lead to the conclusion that multi-cycle internal combustion engine (ICE) simulations performed using RANS must exhibit a converging numerical solution after a certain number of consecutive cycles. However, for some engine configurations unsteady RANS simulations are not guaranteed to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS modeling to simulate multiple engine cycles, the cycle-to-cycle variations (CCV) generated from different initial conditions at each cycle are not damped out even after a large number of cycles. A single-cylinder GDI research engine is simulated using RANS modeling and the numerical results for 20 consecutive engine cycles are evaluated for two specific operating conditions.
2015-09-01
Technical Paper
2015-01-1796
Andrew Ickes, Reed Hanson, Thomas Wallner
Dual-fuel combustion using port-injected gasoline with a direct diesel injection has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. Reducing compression ratio, in conjunction with a higher expansion ratio using alternative valve timings, decreases compressed charge reactivity while maintain a high expansion ratio for maximum work extraction. Experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate dual-fuel combustion with port gasoline injection to supplement the direct diesel injection. The engine employs intake variable valve actuation (VVA) for early (EIVC) or late (LIVC) intake valve closing to yield reduced effective compression ratio.
2015-09-01
Technical Paper
2015-01-1871
Thomas Wallner, James M. Sevik, Riccardo Scarcelli, Brian C. Kaul, Robert M. Wagner
Turbocharged gasoline direct injection (GDI) engines are quickly becoming more prominent in light-duty automotive applications because of their potential improvements in efficiency and fuel economy. While EGR dilute and lean operation serve as potential pathways to further improve efficiencies and emissions in GDI engines, they also pose challenges for stable engine operation. Tests were performed on a single-cylinder research engine that is representative of current automotive-style GDI engines. Baseline cases were performed under steady-state operating conditions where combustion phasing and dilution were varied to determine the effects on indicated efficiency and combustion stability. Sensitivity studies were then carried out by introducing binary low-high perturbation of spark timing and injection duration on a cycle-by-cycle basis under EGR dilute and lean operation to determine dominant feedback mechanisms.
2015-04-14
Technical Paper
2015-01-0965
James M. Sevik, Thomas Wallner, Scott Miers, Jeff Wasil
Abstract In 1990, Roy Douglas developed an analytical method to calculate the global air-to-fuel ratio of a two-stroke engine from exhaust gas emissions. While this method has considerable application to two-stroke engines, it does not permit the calculation of air-to-fuel ratios for oxygenated fuels. This study proposed modifications to the Roy Douglas method such that it can be applied to oxygenated fuels. The ISO #16183 standard, the modified Spindt method, and the Brettschneider method were used to evaluate the modifications to the Roy Douglas method. In addition, a trapped air-to-fuel ratio, appropriate for two-stroke engines, was also modified to incorporate oxygenated fuels. To validate the modified calculation method, tests were performed using a two-stroke carbureted and two-stroke direct injected marine outboard engine over a five-mode marine test cycle running indolene and low level blends of ethanol and iso-butanol fuels.
2015-04-14
Technical Paper
2015-01-0874
Mateos Kassa, Carrie Hall, Andrew Ickes, Thomas Wallner
Abstract Recent developments in advanced combustion engines have demonstrated the potential increases in efficiency and reductions in emissions through low temperature combustion (LTC). These combustion modes often rely on high exhaust gas recirculation (EGR), early fuel injection systems, and in some cases a combination of fuels with different reactivities. Despite the advantages of LTC, such operations are highly sensitive to the in-cylinder pre-combustion conditions and face significant challenges in multi-cylinder operation due to cylinder-to-cylinder variations of the combustion process. The cause of cylinder-to-cylinder variations is strongly tied to non-uniform trapped mass. In particular, in-cylinder oxygen concentration plays a critical role in the combustion process of each cylinder and can be leveraged to predict combustion characteristics and to develop control algorithms that mitigate cylinder-to-cylinder variation.
2015-04-14
Technical Paper
2015-01-0768
Louis Sileghem, Andrew Ickes, Thomas Wallner, Sebastian Verhelst
Abstract Stricter CO2 and emissions regulations are pushing spark ignition engines more and more towards downsizing, enabled through direct injection and turbocharging. The advantages which come with direct injection, such as increased charge density and an elevated knock resistance, are even more pronounced when using low carbon number alcohols instead of gasoline. This is mainly due to the higher heat of vaporization and the lower air-to-fuel ratio of light alcohols such as methanol, ethanol and butanol. These alcohols are also attractive alternatives to gasoline because they can be produced from renewable resources. Because they are liquid, they can be easily stored in a vehicle. In this respect, the performance and engine-out emissions (NOx, CO, HC and PM) of methanol, ethanol and butanol were examined on a 4 cylinder 2.4 DI production engine and are compared with those on neat gasoline.
2014-11-11
Journal Article
2014-32-0087
Jeff R. Wasil, Thomas Wallner
Abstract Biologically derived isobutanol, a four carbon alcohol, has an energy density closer to that of gasoline and has potential to increase biofuel quantities beyond the current ethanol blend wall. When blended at 16 vol% (iB16), it has identical energy and oxygen content of 10 vol% ethanol (E10). Engine dynamometer emissions tests were conducted on two open-loop electronic fuel-injected marine outboard engines of both two-stroke and four-stroke designs using indolene certification fuel (non-oxygenated), iB16 and E10 fuels. Total particulate emissions were quantified using Sohxlet extraction to determine the amount of elemental and organic carbon. Data indicates a reduction in overall total particulate matter relative to indolene certification fuel with similar trends between iB16 and E10. Gaseous and PM emissions suggest that iB16, relative to E10, could be promising for increasing the use of renewable fuels in recreational marine engines and fuel systems.
2014-10-13
Technical Paper
2014-01-2694
Jay Anderson, Scott Miers, Thomas Wallner, Kevin Stutenberg, Henning Lohse-Busch, Michael Duoba
Abstract Two modern light-duty passenger vehicles were selected for chassis dynamometer testing to evaluate differences in performance end efficiency resulting from CNG and gasoline combustion in a vehicle-based context. The vehicles were chosen to be as similar as possible apart from fuel type, sharing similar test weights and identical driveline configurations. Both vehicles were tested over several chassis dynamometer driving cycles, where it was found that the CNG vehicle exhibited 3-9% lower fuel economy than the gasoline-fueled subject. Performance tests were also conducted, where the CNG vehicle's lower tractive effort capability and longer acceleration times were consistent with the lower rated torque and power of its engine as compared to the gasoline model. The vehicles were also tested using quasi-steady-state chassis dynamometer techniques, wherein a series of engine operating points were studied.
2014-04-01
Technical Paper
2014-01-1230
Thomas Wallner, Andrew Ickes, Jeff Wasil, James Sevik, Scott Miers
Abstract This study evaluates iso-butanol as a pathway to introduce higher levels of alternative fuels for recreational marine engine applications compared to ethanol. Butanol, a 4-carbon alcohol, has an energy density closer to gasoline than ethanol. Isobutanol at 16 vol% blend level in gasoline (iB16) exhibits energy content as well as oxygen content identical to E10. Tests with these two blends, as well as indolene as a reference fuel, were conducted on a Mercury 90 HP, 4-stroke outboard engine featuring computer controlled sequential multi-port Electronic Fuel Injection (EFI). The test matrix included full load curves as well as the 5-mode steady-state marine engine test cycle. Analysis of the full load tests suggests that equal full load performance is achieved across the engine speed band regardless of fuel at a 15-20°C increase in exhaust gas temperatures for the alcohol blends compared to indolene.
2014-04-01
Journal Article
2014-01-1238
Nicholas Matthias, Thomas Wallner, Riccardo Scarcelli
The pressing need to improve U.S. energy independence and reduce climate forcing fossil fuel emissions continues to motivate the development of high-efficiency internal combustion engines. A recent trend has been to downsize and turbocharge automotive spark-ignited engines coupled with direct fuel injection to improve engine efficiency while maintaining vehicle performance. In-line with recent trends in state-of-the-art engine technology, the focus of this study is lean and EGR dilute combustion in a gasoline direct injection (GDI) engine. The lean and dilute operating limits are defined by combustion stability typically in terms of COVIMEP so experiments were carried out on an automotive size single-cylinder research engine to characterize combustion stability. From a 20,000 cycle sequence analysis, lean operating conditions exhibit binary high- to low-IMEP cycle sequences. This may be because the cycle-to-cycle feedback mechanisms are physically limited to one or two cycles.
2014-04-01
Journal Article
2014-01-1309
Andrew Ickes, Thomas Wallner, Yu Zhang, William De Ojeda
Abstract Dual-fuel combustion using liquid fuels with differing reactivity has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low soot and NOx emissions, and high indicated efficiency. Varying fractions of gasoline-type and diesel-type fuels enable operation across a range of low- and mid-load operating conditions. Expanding the operating range to cover the full operating range of a heavy-duty diesel engine, while maintaining the efficiency and emissions benefits, is a key objective. With dissimilar properties of the two utilized fuels lying at the heart of the dual-fuel concept, a tool for enabling this load range expansion is altering the properties of the two test fuels - this study focuses on altering the reactivity of the diesel fuel component. Tests were conducted on a 13L six-cylinder heavy-duty diesel engine modified to run dual-fuel combustion with port gasoline injection to supplement the direct diesel injection.
2013-10-14
Journal Article
2013-01-2612
Thomas Wallner, Andrew Ickes, Kristina Lawyer, Scott Miers, Jeffrey Naber, David Ertl, Rodney Williamson
This paper evaluates the potential of adding higher alcohols to gasoline blendstock in an attempt to improve overall fuel performance. The alcohols considered include ethanol, normal- and iso-structures of propanol, butanol and pentanol as well as normal-hexanol (C2-C6). Fuel performance is quantified based on energy content, knock resistance as well as petroleum displacement and promising multi-component blends are systematically identified based on property prediction methods. These promising multi-component blends, as well as their respective reference fuels, are subsequently tested for efficiency and emissions performance utilizing a gasoline direct injection, spark ignition engine. The engine test results confirm that combustion and efficiency of tailored multi-component blends closely match those of the reference fuels. Regulated emissions stemming from combustion of these blends are equal or lower compared to the reference fuels across the tested engine speed and load regime.
2013-09-24
Journal Article
2013-01-2422
Yu Zhang, Ilya Sagalovich, William De Ojeda, Andrew Ickes, Thomas Wallner, David D. Wickman
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
2013-09-08
Technical Paper
2013-24-0029
Riccardo Scarcelli, Nicholas Matthias, Thomas Wallner
This research effort focuses on lean-burn combustion in gasoline internal combustion engines. Gasoline is largely known to be characterized by narrow flammability range, which makes the use of ultra-lean mixtures very challenging. In order to fully explore the gasoline lean burn potential, a promising strategy should combine advanced intake geometries, injection strategies, and ignition technologies. In this paper, a CFD methodology is developed in order to provide proper insight into lean-burn gasoline combustion. A baseline homogenous/lean case is analyzed and numerical results are validated against engine data. Two critical issues are addressed. First, a relatively large detailed mechanism is validated against the experimental data for extreme operating conditions (low pressure values, lean mixtures). The large cycle-to-cycle variation characterizing lean combustion is shown experimentally.
2013-04-08
Technical Paper
2013-01-1126
Kristina Lawyer, Andrew Ickes, Thomas Wallner, David Ertl, Rodney Williamson, Scott Miers, Jeffrey Naber
Higher carbon number alcohols offer an opportunity to meet the Renewable Fuel Standard (RFS2) and improve the energy content, petroleum displacement, and/or knock resistance of gasoline-alcohol blends from traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part II of this paper builds upon the alcohol selection, fuel implementation scenarios, criteria target values, and property prediction methodologies detailed in Part I. For each scenario, optimization schemes include maximizing energy content, knock resistance, or petroleum displacement. Optimum blend composition is very sensitive to energy content, knock resistance, vapor pressure, and oxygen content criteria target values. Iso-propanol is favored in both scenarios' suitable blends because of its high RON value.
Viewing 1 to 30 of 55

Filter

  • Range:
    to:
  • Year: