Refine Your Search

Topic

Search Results

Author:
Journal Article

Systematic Optimization of an Exhaust System to Meet Noise Radiation Criteria at Idle

2014-04-01
2014-01-0006
Exhaust noise is a major contributor to the radiated noise level of a vehicle, especially at idle. The radiated noise level has to meet a certain criteria based on regulation and consumer demand. In many cases, the problem appears after the vehicle is manufactured and the tailpipe noise measurement is performed indicating a high noise level that needs to be reduced. This paper describes one of those cases where the radiated noise level of a certain passenger car at idle was required to be reduced by 6 dB(A). The exhaust system consists of one main muffler and one auxiliary muffler. A 1D two-port model of the exhaust system including the two mufflers was built using commercial software. This model was validated against the measurement of the two-port matrix of both mufflers. The model was then used together with tailpipe noise measurements to estimate the characteristics of the source strength and impedance.
Journal Article

A Compact Silencer for the Control of Compressor Noise

2014-06-30
2014-01-2060
Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest.
Journal Article

A Note on the Applicability of Thermo-Acoustic Engines for Automotive Waste Heat Recovery

2016-04-05
2016-01-0223
A thermo-acoustic engine is a device converting thermal energy into high amplitude acoustic waves that can be harvested, for example, to obtain electricity. The core of the device is a stack/regenerator along which a temperature gradient is created using one hot and one cold heat exchanger. Correctly designed, the thermal interaction between the working fluid and the regenerator assists in amplifying incident acoustic waves. Previous studies have indicated good efficiency obtained with a system of low geometrical complexity. However, for the practical application of this technique it is vital to understand and identify critical design parameters and operating conditions. This is of special interest in automotive applications where the operating conditions vary significantly over a drive cycle. This works aims at providing a framework for studying the net power generation over a drive cycle.
Journal Article

Particle Number Reduction in Automotive Exhausts Using Acoustic Metamaterials

2017-03-28
2017-01-0909
Air pollution caused by exhaust particulate matter (PM) from vehicular traffic is a major health issue. Increasingly strict regulations of vehicle emission have been introduced and efforts have been put on both the suppression of particulate formation inside the engine cylinders and the development of after-treatment technologies such as filters. With modern direct injected engines that produce a large number of really small sub-micron particles, the focus has increased even further and now also includes a number count. The problem of calculating particle trajectories in flow ducts like vehicle exhaust systems is challenging but important to further improve the technology. The interaction between particles and oscillating flows may lead to the formation of particle groups (regions where the particle concentration is increased), yielding a possibility of realizing particle agglomeration.
Journal Article

A Study on Acoustical Time-Domain Two-Ports Based on Digital Filters with Application to Automotive Air Intake Systems

2011-05-17
2011-01-1522
Analysis of pressure pulsations in ducts is an active research field within the automotive industry. The fluid dynamics and the wave transmission properties of internal combustion (IC) engine intake and exhaust systems contribute to the energy efficiency of the engines and are hence important for the final amount of CO₂ that is emitted from the vehicles. Sound waves, originating from the pressure pulses caused by the in- and outflow at the engine valves, are transmitted through the intake and exhaust system and are an important cause of noise pollution from road traffic at low speeds. Reliable prediction methods are of major importance to enable effective optimization of gas exchange systems. The use of nonlinear one-dimensional (1D) gas dynamics simulation software packages is widespread within the automotive industry. These time-domain codes are mainly used to predict engine performance parameters such as output torque and power but can also give estimates of radiated orifice noise.
Journal Article

Investigations of Automotive Turbocharger Acoustics

2011-09-11
2011-24-0221
In this paper an overview of recent experimental studies performed at KTH on the sound transmission and sound generation in turbochargers is presented. The compressor and turbine of the turbochargers are treated as acoustic active 2-ports and characterized using the unique experimental test facility established at KTH. The 2-port model is limited to the plane wave range so for higher frequencies the propagating acoustic power is estimated using an average based on pressure cross-spectra. A number of automotive turbochargers have been studied for a variety of operating conditions systematically selected from the compressor and turbine charts. The paper discusses the experimental procedures including special techniques implemented to improve the quality of the data. Results from a number of experiments on various modern automotive turbochargers including a unit with variable turbine geometry (VTG) are presented.
Technical Paper

Acoustic Analysis of Charge Air Coolers

2007-05-15
2007-01-2208
This paper presents the results from a study of the acoustic properties of charge air coolers for passenger cars. Charge air coolers are used on turbo charged engines to increase the overall performance. The cooling of the charged air results in higher density and thus volumetric efficiency. Important for petrol engines is also that the knock margin increases with reduced charge air temperature. A property that is still not very well investigated is the sound transmission through charge air coolers. The pressure drop in the narrow cooling tubes results in frequency dependent resistive effects on the transmitted sound that is non negligible. Since the cross dimensions of the connecting tanks, located on each side of the cooling tubes, are big compared to the wave length for engine breathing noise, three dimensional effects can also be of importance.
Technical Paper

Acoustics of Turbochargers

2007-05-15
2007-01-2205
Noise from turbo-chargers is increasingly becoming an issue. Partly due to improved noise control of other components and partly due to increased specific mass flows. Despite that the turbocharging technique was developed in the first part of the last century the acoustical behavior is still a field where there is a lack of research. In this paper an overview of the existing research is presented including the work done in the EC-project ARTEMIS. Some first results from recently started investigations at the new gas management research centre, KTH CICERO, will also be described. A turbo-unit always consists of a compressor which normally is driven by an exhaust turbine. Both the turbine and the compressor will have an influence on how the low frequency engine pulsations propagate in the intake/exhaust system. This is referred to as the passive acoustic property of the turbo-unit.
Technical Paper

Acoustical Study of Micro- Perforated Plates for Vehicle Applications

2009-05-19
2009-01-2037
Micro-perforated plate (MPP) absorbers are perforated plates with holes typically in the sub mm range and perforation ratios around 1%. The values are typical for applications in air at standard temperature and pressure (STP). The underlying acoustic principle is simple, it is to create a surface with a built in damping which effectively absorbs sound waves. To achieve this, the acoustic impedance of a MPP absorber is normally tuned to be of the order of the characteristic wave impedance in the medium (~ 400 Pa*s/m in air at STP). The traditional application for MPP absorbers has been building acoustics often combined with a so called panel absorber, to create an absorption peak at a selected frequency. However, MPP absorbers made of metal could also be used for noise control close to or at the source in many vehicle applications.
Technical Paper

Experimental Determination of Sound Transmission in Turbo-Compressors

2009-05-19
2009-01-2045
In this paper experimental procedures to determine the sound transmission through automotive turbo-charger compressors are described. An overview of a unique turbocharger testing facility established at KTH CICERO in Stockholm is given. The facility can be used to measure acoustic two-port data for turbo-compressors. Results from measurements on a passenger car turbo-compressor are presented and the influence of operating conditions on the sound transmission is discussed.
Technical Paper

Experimental Facility for the Complete Determination of Sound Transmission in Turbochargers

2010-06-09
2010-01-1424
In this paper a unique experimental facility designed for a complete determination of the sound transmission in turbochargers is introduced. The facility can be used to characterize the passive acoustic effect for turbocharger compressors and turbines working in realistic operating conditions by extracting the acoustic two-port data. The acoustic pressure transmission loss results for a passenger car turbocharger compressor and turbine measured in up- and downstream directions regarding the mean flow are presented. The data are obtained for various operating points of the turbocharger and the influence of operating conditions on the sound transmission is discussed.
Technical Paper

Modelling of Acoustic Resonators Using the Linearized Navier Stokes Equations

2016-06-15
2016-01-1821
To tune the acoustics of intake systems resonators are often used. A problem with this solution is that the performance of these resonators can be affected a lot by flow. First, for low frequencies (Strouhal-numbers) the acoustic induced vorticity across a resonator inlet opening will create damping, which can reduce the efficiency. Secondly, the vorticity across the opening can also change the end-correction (added mass) for the resonator, which can modify the resonance frequency. However, the largest problem that can occur is whistling. This happens since the vortex-sound interaction across a resonator opening for certain Strouhal-numbers will amplify incoming sound waves. A whistling can then be created if this amplified sound forms a feedback loop, e.g., via reflections from system boundaries or the resonator. To analyse this kind of problem it is necessary to have a model that allows for both sound and vorticity and their interaction.
Technical Paper

Inclusion of Upstream Turbulent Inflow Statistics to Numerically Acquire Proper Fan Noise Characteristics

2016-06-15
2016-01-1811
To obtain realistic noise characteristics from CAA studies of subsonic fans, it is important to prescribe properly constructed turbulent inflow statistics. This is frequently omitted; instead it is assumed that the stochastic characteristics of turbulence, absent at the initial stage, progressively develops as the rotor inflicts the flow field over time and hence that the sound generating mechanism governed by surface pressure fluctuations are asymptotically accounted for. That assumption violates the actual interplay taking place between an ingested flow field and the surface pressure fluctuations exerted by the blades producing noise. The aim of the present study is to examine the coupling effect between synthetically ingested turbulence to sound produced from a subsonic ducted fan. The steady state inflow parameters are mapped from a precursor RANS simulation onto the inflow boundaries of a reduced domain to limit the computational cost.
Technical Paper

Predicting Fluid Driven Whistles in Automotive Intake and Exhaust Systems

2016-06-15
2016-01-1820
This work explores how fluid driven whistles in complex automotive intake and exhaust systems can be predicted using computationally affordable tools. Whistles associated with unsteady shear layers (created over for example side branches or perforates in resonators) are studied using vortex sound theory; vorticity in the shear layer interacts with the acoustic field while being convected across the orifice. If the travel time of a hydrodynamic disturbance over the orifice reasonably matches a multiple of the acoustic period of an acoustic feedback system, energy is transferred from the flow field to the acoustic field resulting in a whistle. The actual amplitude of the whistle is set by non-linear saturation phenomena and cannot be predicted here, but the frequency and relative strength can be found. For this not only the mean flow and acoustic fields needs to be characterized separately, but also the interaction of the two.
Technical Paper

Optimization of Compact Non-Fibrous Silencer for the Control of Compressor Noise

2016-06-15
2016-01-1818
The concept of IC engine downsizing is a well-adapted industry standard, enabling better fuel conversion efficiency and the reduction of tailpipe emissions. This is achieved by utilizing different type of superchargers. As a consequence, the additional charger noise emission, at the IC engine inlet, can become a problem. In order to address such problem, the authors of this work have recently proposed a novel dissipative silencer for effective and robust noise control of the compressor. Essentially, it realizes an optimal flow channel impedance, referred to as the Cremer impedance. This is achieved by means of a straight flow channel with a locally reacting wall consisting of air cavities covered by an acoustic resistance, e.g., a micro-perforated panel (MPP). In this paper, an improved optimization method of this silencer is presented. The classical Cremer impedance model is modified to account for mean flow dependence of the optimal wave number.
Technical Paper

Acoustic Modelling and Characterization of Plate Heat Exchangers

2012-06-13
2012-01-1562
There is increased concern about the noise emission from cooling systems. This is mainly due to an increased need for cooling needs due to turbo-charging and EGR systems, which tend to increase the fan power and thereby the noise. An important issue in this context is the behavior of the heat-exchanger and its acoustic transmission and absorption properties. In this paper an acoustic model to evaluate such data for a common type of heat exchanger, the parallel plate type, is presented. The basic configuration is assumed to be a matrix of parallel, narrow channels. The developed model is based on a so called equivalent fluid for an anisotropic medium. It is mainly dependent on the heat exchanger geometry combined with the Kirchhoff model for thermo-viscous wave propagation in narrow tubes. The proposed model can be used to predict the sound transmission and absorption for an entire heat exchanger for incident plane waves.
Technical Paper

Sound Transmission in Automotive Turbochargers

2011-05-17
2011-01-1525
Turbochargers are common parts of a modern automotive engine. This paper presents an overview of the recent studies performed in the competence center for gas exchange studies at KTH on the sound transmission in turbochargers. The compressor and turbine of the turbochargers are treated as acoustic 2-ports and the scattering matrix for these devices are determined. A unique experimental facility established in the competence center for gas exchange research at KTH has been utilized to study the turbochargers at a variety of operating conditions systematically selected from compressor and turbine charts. A description of the experimental procedures to determine the acoustic 2-port data including techniques implemented to improve the quality of the results is presented. Results from a number of experiments on various modern automotive turbochargers including a unit with variable turbine geometry (VTG) are included.
Technical Paper

Aeroacoustics of Duct Branches-With Application to Silencers

2011-09-11
2011-24-0218
The inclusion of flow-acoustic interaction effects in linear acoustic multiport models has been studied. It is shown, using a T-junction as illustration example, that as long the acoustic system is linear the required information is included in a scattering matrix obtained by experimental or numerical studies. Assuming small Mach numbers and low frequencies-as in most automotive silencer applications-the scattering matrix for the T-junction can be approximated using quasi-steady models. Models are derived that holds for all possible configurations of grazing and bias flow in the T-junctions. The derived models are then used to predict the performance of a novel silencer concept, where a resonator is formed by acoustically short-circuiting the inlet and outlet ducts of a flow reversal chamber. The agreement between experiments and simulations is excellent, justifying the use of the quasi-steady modeling approach.
Technical Paper

Acoustical Methods for Investigating Turbocharger Flow Instabilities

2013-05-13
2013-01-1879
In order to increase the internal combustion engine efficiency turbocharging is today widely used. The trend, in modern engine technology, is towards higher boost pressures while keeping the combustion pressure raise relatively small. The turbocharger surge occurs if the pressure at the outlet of the compressor is greater than it can maintain, i.e., a reverse flow will be induced. In presence of such flow conditions instabilities will occur which can couple to incident acoustic (pressure) waves and amplify them. The main objective of the present work is to propose a novel method for investigation of turbocharger flow instabilities or surge precursors. The method is based on the determination of the acoustic two-port data. The active part of this data describes the sound generation and the passive part the scattering of sound. The scattering data will contain information about flow-acoustic interaction and amplification of sound that could occur close to surge.
Technical Paper

Whistling Potential for Duct Components

2013-05-13
2013-01-1889
Components in ducts systems that create flow separation can for certain conditions and frequencies amplify incident sound waves. This vortex-sound phenomena is the origin for whistling, i.e., the production of tonal sound at frequencies close to the resonances of a duct system. One way of predicting whistling potential is to compute the acoustic power balance, i.e., the difference between incident and scattered sound power. This can readily be obtained if the scattering matrix is known for the object. For the low frequency plane wave case this implies knowledge of the two-port data, which can be obtained by numerical and experimental methods. In this paper the procedure to experimentally determine whistling potential will be presented and some examples are given to show how this procedure can be used in some applications for automotive intake and exhaust system components.
X