Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Friction Coefficient Variation Mechanism under Wet Condition in Disk Brake (Variation Mechanism Contributing Wet Wear Debris)

2016-09-18
2016-01-1943
This paper deals with friction under wet condition in the disk brake system of automobiles. In our previous study, the variation of friction coefficient μ was observed under wet condition. And it was experimentally found that μ becomes high when wear debris contains little moisture. Based on the result, in this paper, we propose a hypothesis that agglomerates composed of the wet wear debris induce the μ variation as the agglomerates are jammed in the gaps between the friction surfaces of a brake pad and a disk rotor. For supporting the hypothesis, firstly, we measure the friction property of the wet wear debris, and confirm that the capillary force under the pendular state is a factor contributing to the μ variation. After that, we simulate the wear debris behavior with or without the capillary force using the particle-based simulation. We prepare the simulation model for the friction surfaces which contribute to the friction force through the wear debris.
Journal Article

Evaluation of Friction Phenomena of Brake Pads by Acoustic Emission Method

2014-09-28
2014-01-2484
Brake pads are composite materials made from dozens of ingredients intended to simultaneously satisfy various performances such as brake effectiveness, wear, noise and vibrations. For this reason, the friction phenomena that occur during braking are complicated. It is important to clarify the friction phenomena, but that is not easy because the associated complexities as mentioned above. We looked to acoustic emission (AE) as an online evaluation method of friction phenomena. AE is a non-destructive testing method that measures elastic stress waves caused by the deformation and fracturing of materials. In fact, it has been reported that the difference between abrasive wear and adhesive wear of a metal can be identified from the change in the frequency spectrum of AE signals. In this study, we verify whether differences in the friction phenomena of brake pads are detectable by the AE method. Three kinds of brake pads were used in the experiments.
Technical Paper

A Study on Rear Disc Brake Groan Noise Immediately After Stopping

2005-10-09
2005-01-3917
1 In this study, we investigated a new type of groan noise that is different from other conventional types of groan noises during braking. This groan noise occurs immediately after stopping the vehicle. We investigated the behaviors of the pads and caliper on the vehicle with two types of pads. By comparing the data, we assumed that μ characteristics of those pads during the stopping event are different. Then we examined the friction surface of the pads in order to study the root cause. In conclusion, we determined that the shape of the contact plateaus of the brake pad surface contributed to this groan noise.
X