Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Challenges and Directions of Using Ammonia as an Alternative Fuel for Internal Combustion Engines

2023-04-11
2023-01-0324
In recent decades, the importance of emerging alternative fuels has increased significantly as a solution to the problems of global warming and air pollution from energy production. In this context, ammonia (NH3) is seen as a potential option and energy vector that may be able to overcome the technical challenges associated with the use of other carbon-free fuels such as hydrogen (H2) in internal combustion engines (ICE). In this research, a numerical methodology for evaluating the impact of using ammonia as a fuel for spark-ignition ICEs has been developed. A combination of a single-cylinder and multi-cylinder numerical experiments has been performed to identify the main challenges and determine correct engine configuration. In addition, the performance of the engine has been evaluated through standard homologation driving cycles, contrasting it with other alternative propulsion configurations.
Technical Paper

Quasi-1D Analysis of n-Dodecane Split Injection Process

2022-03-29
2022-01-0506
Split injection processes have been analyzed by means of a Quasi-1D spray model that has been recently coupled to a laminar tabulated unsteady-flamelet progress-variable (UFPV) combustion model. The modelling approach can predict ignition delay and lift-off for long injection profiles, and it is now extended to a two-pulse injection scheme. In spite of the simplicity of the approach, relevant phenomena are adequately reproduced. In particular, the faster penetration of the second injection pulse compared to the first one is captured by the model both under inert and reacting conditions. The second pulse ignites much faster than the first one due to the injection into the remnants of the first one, where high temperature oxygen-depleted regions can be found. Ignition of the second pulse happens as soon as the first pulse reaches this region, with a faster low- to high-temperature transition.
Technical Paper

Experimental and Numerical Analysis of Passive Pre-Chamber Ignition with EGR and Air Dilution for Future Generation Passenger Car Engines

2020-04-14
2020-01-0238
Nowadays the combination of strict regulations for pollutant and CO2 emissions, together with the irruption of electric vehicles in the automotive market, is arising many concerns for internal combustion engine community. For this purpose, many research efforts are being devoted to the development of a new generation of high-performance spark-ignition (SI) engines for passenger car applications. Particularly, the PC ignition concept, also known as Turbulent Jet Ignition (TJI), is the focus of several investigations for its benefits in terms of engine thermal efficiency. The passive or un-scavenged version of this ignition strategy does not require an auxiliary fuel supply inside the PC; therefore, it becomes a promising solution for passenger car applications as packaging and installation are simple and straightforward.
Journal Article

A Quasi-1D Model for the Description of ECN Spray a Combustion Process

2020-04-14
2020-01-0661
An existing one-dimensional (1D) spray model, which successfully captures inert spray processes, has been extended to enable prediction of ignition delay and lift-off length under reacting conditions. For that purpose, an additional transport equation for the progress variable has been incorporated, which includes detailed chemistry effects by means of a tabulation method based upon an external flamelet solver. The transport equation for the progress variable is solved in a quasi-1D fashion, along presumed mixture fraction trajectories, while the 1D approach is retained for the mixture fraction and axial velocity fields. The paper includes the model development, as well as the validation against Spray A measurements from the Engine Combustion Network. In spite of the simplified approach, the model captures some of the experimental trends of the lift-off length and ignition delay with a quite low computational cost.
Journal Article

Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

2017-03-28
2017-01-0859
The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface area density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity.
Technical Paper

Application and Evaluation of the Eulerian-Lagrangian Spray Atomization (ELSA) Model on CFD Diesel Spray Simulations

2011-06-09
2011-37-0029
During the last fifteen years, Computational Fluid Dynamics (CFD) has become one of the most important tools to both understand and improve the diesel spray development in Internal Combustion Engine (ICE). Most of the approaches and models used pure Eulerian or Lagrangian descriptions to simulate the spray behavior. However, each one of them has both advantages and disadvantages in different regions of the spray, it can be the dense zone or the downstream dilute zone. One of the most promising techniques, which has been in development since ten years ago, is the Eulerian-Lagrangian Spray Atomization (ELSA) model. This is an integrated model for capturing the whole spray evolution, including primary break-up and secondary atomization. In this paper, the ELSA numerical modeling of diesel sprays implementation in Star-CD (2010) is studied, and simulated in comparison with the diesel spray which has been experimentally studied in our institute, CMT-Motores Térmicos.
Technical Paper

A Numerical Investigation on Combustion Characteristics with the use of Post Injection in DI Diesel Engines

2010-04-12
2010-01-1260
Post injections are a commonly used strategy to reduce soot and NOx emissions in DI diesel engines. This strategy has been widely explored and studied for several years, however, there are still some aspects of the behavior of the combustion process when it is used that are not completely well known. In this paper a numerical study is carried out in order to better understand the improvement on mixing/combustion phenomena using post injection compared with a single injection case. For this purpose, CFD simulations using commercial code Star CD were performed in realistic engine conditions: the combustion of a single injection case (Pilot + Main injection) was compared with that of post injection case (Pilot + Main + Post) evaluating different post injection timings and comparing the simulated results with previously developed experimental tests which reveal the mentioned improvement on combustion behavior.
Technical Paper

The effect of Biodiesel fuel blend rate on the Liquid-phase fuel penetration in Diesel engine conditions

2009-09-13
2009-24-0051
A study was conducted to investigate the evolution of liquid phase penetration of evaporating sprays under engine-like conditions, with diesel and biodiesel fuel blends. This study has been performed in a facility based on a single cylinder two-stroke direct injection Diesel engine operating at low rotational speed which provides a quiescent thermodynamic environment around TDC, when fuel is injected, realistic for current D.I. Diesel engines. Due to the absence of inlet or exhaust valves, very easy optical access to the combustion chamber can be provided through the cylinder head. Pure nitrogen is supplied to the engine as intake gas, in order to avoid combustion. The injection event is carried out by an electronically controlled common rail system. The injector is equipped with real 8-hole nozzles, with a hole diameter of 0.115 mm. Injection pressures in this study ranged between 30 and 160 MPa and different in-cylinder peak pressure and temperature values were considered.
X