Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Fuel Composition Variations (H2:CO) for Biomass Gas HCCI Combustion

2012-04-16
2012-01-1112
Research regarding higher efficiency engines and renewable energy has lead to HCCI engine technology as a viable option with the ability to utilize a variety of fuels. With a larger focus on environmental effects the ability of HCCI engines to produce low levels of NOx and potentially other combustion products is another attractive feature of the technology. Biomass gas as a renewable primary fuel is becoming more predominant regarding internal combustion engine research. The simulated fuel in this study replicates compositions derived from real-world gasification processes; the focus in this work corresponds to fuel composition variations and their effects regarding combustion phasing and performance. There are three biomass gas fuel compositions investigated in this study. All compositions consisted of combustibles of CH₄, CO, and H₂ accompanied by CO₂ then balanced with N₂. The CH₄ and CO₂ constituents of each fuel mixture are held constant at 2% and 5% respectively.
Technical Paper

Experimental Indicated Performance of a HCCI Engine Fuelled by Simulated Biomass Gas

2010-04-12
2010-01-1081
The HCCI combustion mode features characteristics that uniquely position it to facilitate the convergence of gasoline and diesel engine technologies. The ability of HCCI combustion to accommodate a broad variety of fuels is one such characteristic. In this work the viability of a simulated biomass gas that resembles in its composition so-called producer gas is investigated. The paper reports on a single-cylinder HCCI engine's indicated performance when fuelled with the biomass derived gaseous fuels. There were two biomass gas fuel compositions used in this study. Both compositions contained the same amount of CH₄, CO₂, and N₂, and they differed by the H₂ to CO ratio; for Composition 1 the ratio was 10% to 25%, and for Composition 2 it was 15% to 20%. The indicated performance of the HCCI engine was evaluated based on in-cylinder cycle-resolved pressure measurements.
X