Refine Your Search

Search Results

Author:
Viewing 1 to 9 of 9
Book

Automotive Emissions Regulations and Exhaust Aftertreatment Systems

2020-08-31
The objective of this book is to present a fundamental development of the science and engineering underlying the design of exhaust aftertreatment systems for automotive internal combustion engines. No pre-requisite knowledge of the field is required: our objective is to acquaint the reader, whom we expect to be new to the field of emissions control, with the underlying principles, control methods, common problems, and fuel effects on catalytic exhaust aftertreatment devices. We do this in hope that they can better understand the previous and current generations of emissions control, and improve upon them. This book is designed for the engineer, researcher, designer, student, or any combination of those, who is concerned with the control of automotive exhaust emissions. It includes discussion of theory and fundamentals applicable to hardware development.
Technical Paper

Benchtop Investigation of Filtration Efficiency and Pressure Drop Behavior of Commercial High Porosity Gasoline Particulate Filters

2019-01-15
2019-01-0054
The increasing number of gasoline direct injection (GDI) vehicles on the roads has drawn attention to their particulate matter (PM) emissions, which are greater both in number and mass than port fuel injected (PFI) spark ignition (SI) engines [1]. Regulations have been proposed and implemented to reduce exposure to PM, which has been shown to have negative impacts on both human health and the environment [2, 3]. Currently, the gasoline particulate filter (GPF) is the proposed method of reducing the amount of PM from vehicle exhaust, but modifications to improve the filtration efficiency (FE) and reduce the pressure drop across the filter are yet needed for implementation of this solution in on-road vehicles. This work evaluates the impacts of wall thickness and cell density on filtration efficiency and backpressure using a benchtop filtration system.
Technical Paper

Design and Optimization of a P4 mHEV Powertrain

2022-03-29
2022-01-0669
The EcoCAR Mobility Challenge (EMC) is the latest edition of the Advanced Vehicle Technology Competition (AVTC) series sponsored by the US Department of Energy. This competition challenges 11 North American universities to redesign a stock 2019 Chevrolet Blazer into an energy-efficient, SAE level 2-autonomous mild hybrid electric vehicle (mHEV) for use in the Mobility as a Service (MaaS) market. The Mississippi State University (MSU) team designed a P4 electric powertrain with an 85kW (113.99 HP) permanent magnet synchronous machine (PMSM) powered by a custom 5.4 kWh lithium-ion energy storage system. To maximize energy efficiency, Model Based Design concepts were leveraged to optimize the overall gear ratio for the P4 system. To accommodate this optimized ratio in the stock vehicle, a custom offset gearbox was designed that links the PMSM to the rear drive module.
Technical Paper

Design of a Mild Hybrid Electric Vehicle with CAVs Capability for the MaaS Market

2020-04-14
2020-01-1437
There is significant potential for connected and autonomous vehicles to impact vehicle efficiency, fuel economy, and emissions, especially for hybrid-electric vehicles. These improvements could have large-scale impact on oil consumption and air-quality if deployed in large Mobility-as-a-Service or ride-sharing fleets. As part of the US Department of Energy's current Advanced Vehicle Technology Competition (AVCT), EcoCAR: The Mobility Challenge, Mississippi State University’s EcoCAR Team is redesigning and doing the development work necessary to convert a conventional gasoline spark-ignited 2019 Chevy Blazer into a hybrid-electric vehicle with SAE Level 2 autonomy. The target consumer segments for this effort are the Mobility-as-a-Service fleet owners, operators and riders. To accomplish this conversion, the MSU team is implementing a P4 mild hybridization strategy that is expected to result in a 30% increase in fuel economy over the stock Blazer.
Technical Paper

Development of a System Level Soot-NOx Trap Aftertreatment Device Model

2006-10-16
2006-01-3287
A Soot-NOx Trap (SNT) is a combinatorial aftertreatment device intended to decrease both particulate and NOx emissions simultaneously. A system-level Soot-NOx Trap model was developed by adding Lean NOx Trap kinetics to a 1D Diesel Particulate Filter model. The hybrid model was validated against each parent model for the limiting cases, then exercised to investigate the interacting redox behavior. Modulations in temperature and exhaust air-fuel ratio were investigated for their ability to facilitate particulate oxidation and NOx reduction in the trap.
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

2010-10-25
2010-01-2127
Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Integration of Diesel Engine, Exhaust System, Engine Emissions and Aftertreatment Device Models

2005-04-11
2005-01-0947
An overall diesel engine and aftertreatment system model has been created that integrates diesel engine, exhaust system, engine emissions, and diesel particulate filter (DPF) models using MATLAB Simulink. The 1-D engine and exhaust system models were developed using WAVE. The engine emissions model combines a phenomenological soot model with artificial neural networks to predict engine out soot emissions. Experimental data from a light-duty diesel engine was used to calibrate both the engine and engine emissions models. The DPF model predicts the behavior of a clean and particulate-loaded catalyzed wall-flow filter. Experimental data was used to validate this sub-model individually. Several model integration issues were identified and addressed. These included time-step selection, continuous vs. limited triggering of sub-models, and code structuring for simulation speed. Required time-steps for different sub models varied by orders of magnitude.
Technical Paper

Modeling and Experimentation of GDI-Sized Particulate Filtration and Pressure-Drop Behavior in Uncoated Commercial DPF Substrates

2019-01-15
2019-01-0052
Gasoline Direct Injection (GDI) is known to produce lower concentrations of smaller particulate matter (PM) compared to diesel combustion [1]. The lower concentration results in the absence of soot-cake formation on the filter channel wall and therefore filtration behavior deviates from the expected diesel particulate filter (DPF) performance. Therefore, studies of cake-less filtration regimes for smaller sized particulates is of interest for GDI PM mitigation. This work investigates the filtration efficiency of laboratory-generated particulates, representative of GDI-sized PM, in uncoated, commercial DPF cordierite substrates of varying porosities. Size-dependent particulate concentrations were measured using a Scanning Mobility Particle Sizer (SMPS), both upstream and downstream of the filters. By comparing these measured concentrations, the particle size-dependent filtration efficiency of filter samples was calculated.
Technical Paper

Neutron Imaging of Diesel Particulate Filters

2009-11-02
2009-01-2735
This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500 rpm, 2.6 bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.
X