Criteria

Text:
Display:

Results

Viewing 1 to 4 of 4
2016-04-05
Journal Article
2016-01-0730
Ryan K. Gehmlich, Cosmin E. Dumitrescu, Yefu Wang, Charles J. Mueller
Abstract Leaner lifted-flame combustion (LLFC) is a mixing-controlled combustion strategy for compression-ignition (CI) engines that does not produce soot because the equivalence ratio at the lift-off length is less than or equal to approximately two. In addition to completely preventing soot formation, LLFC can simultaneously control emissions of nitrogen oxides because it is tolerant to the use of exhaust-gas recirculation for lowering in-cylinder temperatures. Experiments were conducted in a heavy-duty CI engine that has been modified to provide optical access to the combustion chamber, to study whether LLFC is facilitated by an oxygenated fuel blend (T50) comprising a 1:1 mixture by volume of tri-propylene glycol mono-methyl ether with an ultra-low-sulfur #2 diesel emissions-certification fuel (CFA). Results from the T50 experiments are compared against baseline results using the CFA fuel without the oxygenate.
2015-04-14
Journal Article
2015-01-0801
Gregory K. Lilik, Charles J. Mueller, Cosmin E. Dumitrescu, Christopher R. Gehrke
Abstract Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
2014-04-01
Journal Article
2014-01-1260
Cosmin Emil Dumitrescu, Christopher Polonowski, Brian T. Fisher, A. S. (Ed) Cheng, Gregory K. Lilik, Charles J. Mueller
Natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics are employed to investigate fuel-property effects on mixing-controlled combustion, using select research fuels-a #2 ultra-low sulfur emissions-certification diesel fuel (CF) and four of the Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8)-that varied in cetane number (CN), distillation characteristics, and aromatic content. The experiments were performed in a single-cylinder heavy-duty optical compression-ignition (CI) engine at two injection pressures, three dilution levels, and constant start-of-combustion timing. If the experimental results are analyzed only in the context of the FACE fuel design parameters, CN had the largest effect on emissions and efficiency.
2010-10-25
Technical Paper
2010-01-2168
Vahid Hosseini, W Neill, Hongsheng Guo, Cosmin Emil Dumitrescu, Wallace Chippior, Craig Fairbridge, Ken Mitchell
The effects of cetane number, aromatics content and 90% distillation temperature (T90) on HCCI combustion were investigated using a fuel matrix designed by the Fuels for Advanced Combustion Engines (FACE) Working Group of the Coordinating Research Council (CRC). The experiments were conducted in a single-cylinder, variable compression ratio, Cooperative Fuel Research (CFR) engine. The fuels were atomized and partially vaporized in the intake manifold. The engine was operated at a relative air/fuel ratio of 1.2, 60% exhaust gas recirculation (EGR) and 900 rpm. The compression ratio was varied over the range of 9:1 to 15:1 to optimize the combustion phasing for each fuel, keeping other operating parameters constant. The results show that cetane number and T90 distillation temperature significantly affected the combustion phasing. Cetane number was clearly found to have the strongest effect.
Viewing 1 to 4 of 4