Refine Your Search

Search Results

Author:
Viewing 1 to 10 of 10
Technical Paper

Pre-Heating the Aftertreatment System with a Burner

2022-03-29
2022-01-0554
NOx emissions limits for commercial trucks will be drastically reduced in the United States and Europe later in this decade. The most recent Euro VII proposal suggested that pre-heating of the aftertreatment system with a diesel burner may be needed to meet a new low-NOx limit. Pre-heating serves to prepare the SCR catalyst so that it can begin to convert NOx almost immediately after the engine is started. This is particularly important for an engine that is not equipped with exhaust gas recirculation to reduce engine-out NOx. This study considered a burner installed between a 12.4 liter engine and an appropriately-sized in-line DOC/DPF/SCR aftertreatment system. Initially, a wide range of burner and air pump operating conditions were examined to determine the maximum fueling rate and corresponding air flow rate necessary to complete combustion and to convey the resultant heat downstream to the aftertreatment components.
Journal Article

Meeting Future NOX Emissions Over Various Cycles Using a Fuel Burner and Conventional Aftertreatment System

2022-03-29
2022-01-0539
The commercial vehicle industry continues to move in the direction of improving brake thermal efficiency while meeting more stringent diesel engine emission requirements. This study focused on demonstrating future emissions by using an exhaust burner upstream of a conventional aftertreatment system. This work highlights system results over the low load cycle (LLC) and many other pertinent cycles (Beverage Cycle, and Stay Hot Cycle, New York Bus Cycle). These efforts complement previous works showing system performance over the Heavy-Duty FTP and World Harmonized Transient Cycle (WHTC). The exhaust burner is used to raise and maintain the Selective Catalytic Reduction (SCR) catalyst at its optimal temperature over these cycles for efficient NOX reduction. This work showed that tailpipe NOX is significantly improved over these cycles with the exhaust burner.
Technical Paper

Simulation of Aftertreatment Thermal Management Strategies for Low-Load Operation

2020-04-14
2020-01-0359
The low-NOx regulation for heavy duty trucks proposed by California’s Air Resources Board (CARB) will present a significant challenge to truck, engine and aftertreatment system manufacturers. This regulation will include a new test cycle representative of low-load operation. With low-load cycles, NOx conversion by the SCR (selective catalytic reduction) system is limited primarily by the exhaust temperature; thus, thermal management will dominate development. Simulation can be used to examine different thermal management strategies, and to define high-level requirements for new components. In this study, modeling was used to investigate SCR performance on two different low-load cycles, including the one selected by CARB for the low-NOx regulation. First, the “thermal deficit” of the cycle was quantified using a constant heat input.
Technical Paper

Modeling Heavy-Duty Engine Thermal Management Technologies to Meet Future Cold Start Requirements

2019-04-02
2019-01-0731
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system. Several different engine technologies are being considered to meet this need. In this study, a 1-D engine model was first used to evaluate several individual control strategies capable of increasing the exhaust enthalpy and decreasing the engine-out NOX over the initial portion of the cold start FTP cycle. The additional fuel consumption resulting from these strategies was also quantified with the model. Next, several of those strategies were combined to create a hypothetical aftertreatment warm-up mode for the engine. The model was then used to evaluate potential benefits of an air gap manifold (AGM) and two different turbine by-pass architectures. The detailed geometry of the AGM model was taken into account, having been constructed from a real prototype design.
Technical Paper

Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines

2019-04-02
2019-01-0984
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system (ATS). Several different aftertreatment architectures and technologies, all based on selective catalytic reduction (SCR), are being considered to meet this need. One of these architectures, the close-coupled SCR (ccSCR), was evaluated in this study using two different physics-based, 1D models; the simulations focused on the first 300 seconds of the cold-start Federal Test Procedure (FTP). The first model, describing a real, EuroVI-compliant engine equipped with series turbochargers, was used to evaluate a ccSCR located either i) immediately downstream of the low-pressure turbine, ii) in between the two turbines, or iii) in a by-pass around the high pressure turbine.
Technical Paper

Modeling of Aftertreatment Technologies to Meet a Future HD Low-NOx Standard

2019-01-15
2019-01-0043
The low-NOx standard for heavy duty trucks proposed by the California Air Resources Board represents a significant challenge to the engine and aftertreatment system. In this study, exhaust thermal management requirements were quantified using a combination of engine and aftertreatment modeling. First, a 1-D engine model was used to develop a control strategy capable of increasing the exhaust enthalpy and decreasing the engine-out NOx over the initial portion of the cold FTP cycle. The outputs from this model were then used as inputs to a 1-D model of a representative HD aftertreatment system. Several different passive exhaust thermal management technologies were evaluated with this aftertreatment system model, including insulating the downpipe, close-coupling the aftertreatment system, and reducing the thermal inertia of the DOC and DPF; the last option provides the most benefit to early NOx conversion.
Technical Paper

Developing Design Guidelines for an SCR Assembly Equipped for RF Sensing of NH3 Loading

2018-04-03
2018-01-1266
The Cu-zeolite (CuZ) SCR catalyst enables higher NOx conversion efficiency in part because it can store a significant amount of NH3. “NH3 storage control”, where diesel exhaust fluid (DEF) is dosed in accord with a target NH3 loading, is widely used with CuZ catalysts to achieve very high efficiency. The NH3 loading actually achieved on the catalyst is currently estimated through a stoichiometric calculation. With future high-capacity CuZ catalyst designs, it is likely that the accuracy of this NH3 loading estimate will become limiting for NOx conversion efficiency. Therefore, a direct measurement of NH3 loading is needed; RF sensing enables this. Relative to RF sensing of soot in a DPF (which is in commercial production), RF sensing of NH3 adsorbed on CuZ is more challenging. Therefore, more attention must be paid to the “microwave resonance cavity” created within the SCR assembly. The objective of this study was to develop design guidelines to enable and enhance RF sensing.
Technical Paper

Engine Test Protocol for Accelerated Ash Loading of a Diesel Particulate Filter

2011-04-12
2011-01-0607
Diesel particulate filters with a quantity of ash corresponding to the service interval (4500 hours) are needed to verify that soot loading model predictions remain accurate as ash accumulates in the DPF. Initially, long-term engine tests carried out for the purpose of assessing engine and aftertreatment system durability provided ash-loaded DPFs for model verification. However, these DPFs were found to contain less ash than expected based on lube oil consumption, and the ash was distributed uniformly along the length of the inlet channels, as opposed to being in the form of a plug at the outlet end of those channels. Thus, a means of producing DPFs with higher quantities of ash, distributed primarily as plugs, was required. An engine test protocol was developed for this purpose; it included the following: 1) controlled dosing of lube oil into the fuel feeding the engine, 2) formation of a soot cake within the DPF, and 3) periodic active regenerations to eliminate the soot cake.
Technical Paper

Characterization of DPF Ash for Development of DPF Regeneration Control and Ash Cleaning Requirements

2011-04-12
2011-01-1248
The accumulation of ash in a Diesel Particulate Filter (DPF) eventually results in an increase in the pressure drop across the exhaust system component. This situation translates into a reduced capacity for soot, and requires an increased frequency of active regenerations to eliminate this soot. For heavy duty diesel applications, the lifetime of the DPF is long enough to expect that cleaning of the ash from the DPF will be required. The physico-chemical characteristics of the ash as a function of temperature and time will have an impact on the effectiveness of this cleaning. To develop a deeper understanding of this subject, four different samples of ash were characterized in this study that were collected under active or passive regeneration from exhaust systems of engines running on different fuels: ultra low sulfur diesel (ULSD), and biodiesel fuels B20 and B100. The lubricant, an API CJ-4 oil, was used for each engine test.
Journal Article

Engine Test for DOC Quenching in DOC-DPF System for Non-Road Applications

2010-04-12
2010-01-0815
The use of a diesel oxidation catalyst (DOC) in conjunction with a diesel particulate filter (DPF) is now a well-established aftertreatment system design for on-road heavy duty diesel. For non-road applications, the DOC must respond to the need for performance under more diverse and less favorable conditions, such as operation at low loads in cold weather. To choose a DOC technology for such applications, one must have practical and meaningful tests that address the specific catalytic functions of interest such as hydrocarbon oxidation to produce heat for regenerating DPF. This paper describes the development of an engine test protocol that focuses on resistance to the phenomenon known as quenching, the cessation of hydrocarbon (HC) oxidation that occurs when the exhaust temperature decreases below the light-off temperature of the catalyst. During development, the sensitivity and repeatability of the test were carefully scrutinized.
X