Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

Impact of Energy Management on the NPV Gasoline Savings of PHEVs

2010-04-12
2010-01-1236
This paper evaluates the impact of energy management strategy on the cost benefits of a plug-in hybrid electric vehicle (PHEV) by taking into account the impact of PHEV energy management on battery life and petroleum displacement over the life of the vehicle. Using Battery in the Loop (BIL), a real battery is subjected to transient power demands by a virtual vehicle. The vehicle energy management strategy is varied, resulting in different battery utilization scenarios. Battery life, which varies with battery utilization, is estimated for the different energy management scenarios. The same representative drive cycle is used over the different energy management strategies to isolate the impact of energy management on battery utilization. PHEV gasoline savings, in comparison to a charge sustaining hybrid, are calculated for each of the energy management strategies, for a fixed distance of 40 miles.
Technical Paper

Comparing Estimates of Fuel Economy Improvement Via Fuel-Cell Powertrains

2002-06-03
2002-01-1947
Several studies, conducted from 1997 to 2001, have employed vehicle and powertrain simulation models to estimate fuel economy gains for a variety of fuel-cell powertrains. Many of those studies have attempted to control for the comparability of performance between conventional and fuel-cell vehicles (FCVs), but different sets of performance goals and simulation models have been used. This paper reviews the estimates of fuel economy gain (in mpg) vs. varying measures of performance change for a set of those studies. We examine some of the potential causes for the variability of these estimates - fuel used, powertrain hybridization, vehicle raw energy requirements (load), and variations in analysts' assumptions/estimates - when substituting several types of fuel-cell powertrains. Our study includes development of a database and detailed examination of the relationships among powertrain and vehicle characteristics and fuel economy gain estimates for the selected studies.
Technical Paper

Fuel Economy Improvement via Hybridization vs. Vehicle Performance Level

2002-06-03
2002-01-1901
Although many of the studies that use vehicle simulation models to estimate fuel economy gains for a range of hybrid vehicles have attempted to control for the comparability of performance between conventional and hybrid vehicles, different rules and simulation models have been used. This paper reviews the estimates of city, highway, and corporate average fuel economy gain vs. varying measures of performance change for a set of those studies. We examine the causes for the wide range in estimates when hybridizing a vehicle, establish a database, and provide detailed discussions of relationships using several of the studies. Statistical models developed on the basis of the data reveal the causes of variation in mpg gain among conventional/hybrid pairs that have the same 0-60 mph acceleration times. Our study reveals that potential mpg gain via hybridization is greater as the 0-60 mph acceleration time of the pair of compared vehicles drops (and power-to-weight ratios increase).
Technical Paper

Cost Effective Annual Use and Charging Frequency for Four Different Plug-in Powertrains

2013-04-08
2013-01-0494
Vehicles with electrified powertrains, such as hybrid electric vehicles (HEVs), plug-in HEV (PHEVs), and AEVs (all-electric vehicles using grid-supplied battery energy exclusively), are potentially marketable because of low operating costs, but each comes with a significant initial cost penalty in comparison to a conventional vehicle (CV) powered by an internal combustion engine. Accordingly, a high rate of utilization is necessary for cost effectiveness. This paper examines the projected future (2020) cost effectiveness of several alternative powertrains within a standard compact sedan glider: an AEV and a set of selected input-split and output-split HEV and PHEV powertrains with various battery power and energy storage capabilities. Vehicle performance and consumption rates of fuel and electricity were estimated using vehicle simulations, and vehicle prices were estimated using cost models.
Technical Paper

Scenario Analysis of Hybrid Class 3-7 Heavy Vehicles

2000-03-06
2000-01-0989
The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, we quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time.
X