Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A New Global Algebraic Model for NOx Emissions Formation in Post-Flame Gases - Application to Lean Premixed Combustion Systems

2016-04-05
2016-01-0803
A new global NOx emissions formation model, formulated by a single analytically derived algebraic equation, is developed with relevance to post-flame gases. The model originates from subsets of detailed kinetic schemes for thermal and N2O pathway NO formation, needs no calibration and is quick to implement and run. Due to its simplicity, the model can be readily used in both 1D and 3D-CFD simulation codes, as well as for direct post-processing of engine test data. Characteristic timescales that describe the kinetic nature of the involved NO formation routes, when they evolve in the post-flame gases independently the one from another, are introduced incorporating kinetic information from all relevant elementary reactions.
Technical Paper

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions under Different IC Engine Operating Conditions

2019-09-09
2019-24-0147
The accurate prediction of pollutant emissions generated by IC engines is a key aspect to guarantee the respect of the emission regulation legislation. This paper describes the approach followed by the authors to achieve a strict numerical coupling of two different 1D modeling tools in a co-simulation environment, aiming at a reliable calculation of engine-out and tailpipe emissions. The main idea is to allow an accurate 1D simulation of the unsteady flows and wave motion inside the intake and exhaust systems, without resorting to an over-simplified geometrical discretization, and to rely on advanced thermodynamic combustion models and kinetic sub-models for the calculation of cylinder-out emissions. A specific fluid dynamic approach is then used to track the chemical composition along the exhaust duct-system, in order to evaluate the conversion efficiency of after-treatment devices, such as TWC, GPF, DPF, DOC, SCR and so on.
Journal Article

Carbon Monoxide Emissions Model for Data Analytics in Internal Combustion Engine Applications Derived from Post-Flame Chemical Kinetics

2018-04-03
2018-01-1153
In this work, a new CO emissions formation model is developed based on the dynamics of a representative pool of radicals in the post-flame combustion gases. The ultimate target is the derivation of a kinetics-based CO model, formulated by a single differential equation, that can run very fast in any engine diagnostic/post-processing tool which analyzes in-cylinder processes in the framework of big data acquired at the engine test bench or during engine operation in the field. Specific objectives in the development of the current model are (i) inclusion of the effect of engine operating conditions on the CO emissions formation mechanism, (ii) ease of implementation in any diagnostic code/platform, (iii) fast running times toward real-time capability, and (iv) robustness. The presently developed CO model consists of a single Ordinary Differential Equation (ODE) that can be solved analytically, without the need of a stiff chemical kinetics solver.
Technical Paper

High Resolution Global NOx Sub-Model for Embedded System Application with Low Calibration Effort

2020-04-14
2020-01-0246
The starting point of the present work is a global model of NOx formation for stoichiometric and lean combustion of hydrocarbons developed on the basis of a single non-linear algebraic equation. The latter is the exact solution of a system of differential equations describing the main kinetic reaction schemes of NOx formation, because it’s been analytically derived. The NOx sub-model incorporates the well-established thermal (extended Zeldovich) and the N2O reaction paths, which are considered to be the most relevant NOx production paths under certain operating conditions in arbitrary engine application. Furthermore, the NOx sub-model proposed here relies on well-established and adopted mechanisms like the GRI-Mech 3.0 [25] and consequently requires no parameter adjustment.
Journal Article

Quasi-Dimensional Multi-Zone Combustion Diagnostic Tool for SI Engines with Novel NOx and CO Emissions Models

2020-04-14
2020-01-0289
In this work a quasi-dimensional multi-zone combustion diagnostic tool for homogeneous charge Spark Ignition (SI) engines is analytically developed for the evaluation of heat release, flame propagation, combustion velocities as well as engine-out NOx and CO emissions, based on in-cylinder pressure data analysis. The tool can be used to assess the effects of fuel, design and operating parameters on the SI engine combustion and NOx and CO emissions formation processes. Certain novel features are included in the presently developed combustion diagnostic tool. Firstly, combustion chambers of any shape and spark plug position can be considered due to an advanced model for the calculation of the geometric interaction between a spherically expanding flame and a general combustion chamber geometry.
Technical Paper

Study of the Transient Behavior of Turbocharged Diesel Engines Including Compressor Surging Using a Linearized Quasi-Steady Analysis

2005-04-11
2005-01-0225
The transient operation of turbocharged diesel engines during turbocharger compressor surging is investigated through simulation. This form of compressor dynamic instability can generate large amplitude compressor mass flow and pressure rise oscillations, sometimes leading even to flow reversals, and may also induce severe torsional loading to the turbocharger shaft. A model predicting the dynamic behavior of the engine air-charging system when compressor surging occurs was developed in conjunction with a linearized quasi-steady diesel engine simulation code. This analysis possesses the advantage over the more detailed engine codes of basic simplicity, speed of calculation and no need of many engine and turbocharger components parameters given as input data. Emphasis is given to the correct modeling of the physics of the phenomena concerned. Transient operation runs, including critical cases for surging initiation, were applied for two similar six-cylinder diesel engines.
Journal Article

Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model

2009-04-20
2009-01-0931
In this work, a quasi-dimensional, multi-zone combustion model is analytically presented, for the prediction of performance and nitric oxide (NO) emissions of a homogeneous charge spark ignition (SI) engine, fueled with biogas-H2 blends of variable composition. The combustion model is incorporated into a closed cycle simulation code, which is also fully described. Combustion is modeled on the basis of turbulent entrainment theory and flame stretch concepts. In this context, the entrainment speed, by which unburned gas enters the flame region, is simulated by the turbulent burning velocity of a flamelet model. A flame stretch submodel is also included, in order to assess the flame response on the combined effects of curvature, turbulent strain and nonunity Lewis number mixture. As far as the burned gas is concerned, this is treated using a multi-zone thermodynamic formulation, to account for the spatial distribution of temperature and NO concentration inside the burned volume.
X