Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Design and Implementation of a Series Plug-In Hybrid Electric Vehicle for the EcoCAR 2 Competition

2014-10-13
2014-01-2909
As one of the fifteen universities in North America taking part in the EcoCAR 2: Plugging into the Future competition, The Pennsylvania State University Advanced Vehicle Team (PSUAVT) designed and implemented a series plug-in hybrid electric vehicle (PHEV) that reduces fuel consumption and emissions while maintaining high consumer acceptability and safety standards. This architecture allows the vehicle to operate as a pure electric vehicle until the Energy Storage System (ESS) State of Charge (SOC) is depleted. The Auxiliary Power Unit (APU) then supplements the battery to extend range beyond that of a purely electric vehicle. General Motors (GM) donated a 2013 Chevrolet Malibu for PSUAVT to use as the platform to implement the PSUAVT-selected series PHEV design. A 90 kW electric traction motor, a 16.2 kW-hr high capacity lithium-ion battery pack, and Auxiliary Power Unit (APU) are now integrated into the vehicle.
Journal Article

Design, Development and Validation of the 2013 Penn State University E85 Series Plug-In Hybrid Vehicle

2012-09-10
2012-01-1773
The Pennsylvania State University Advanced Vehicle Team (PSU AVT) is one of the fifteen (15) participating teams at the EcoCAR 2 “Plugging In to the Future” challenge. The team has worked in the design, development and validation of converting a 2013 Chevrolet Malibu, into an advanced technology hybrid vehicle. The PSU AVT has determined that a Plug-In Series Electric Hybrid architecture best meets the design goals of the EcoCAR 2 competition. The vehicle will utilize a front-wheel drivetrain powered by a Magna E-drive; an Auxiliary Power Unit (APU) based on a naturally aspirated Weber MPE 750 engine, converted for use with E85, coupled to a UQM PowerPhase 75 generator; an Energy Storage System (ESS) based on six A123, 15s3p battery modules; and a Mototron ECM-5554-112-0904 controller as the Master Vehicle Controller (MVC).
Journal Article

Development, Verification, and Validation of Penn State Extended Range Electric Vehicle

2012-04-16
2012-01-1190
The Pennsylvania State University is one of 16 North American universities that participated in the EcoCAR advanced vehicle technology competition (http://www.ecocarchallenge.org/). A series-hybrid-electric vehicle based on a General Motors crossover SUV platform has been designed, built and tested for this purpose. The powertrain features a 1.3 L turbodiesel engine running on a B20 fuel system, a 75kW generator directly coupled to the engine and advanced lithium-ion batteries. In this paper, the vehicle architecture and control strategy are detailed and performance predictions (e.g., acceleration, fuel consumption and emissions) are presented. This includes discussion of the development process that led to the selected designs. The predicted performance is compared with data obtained on a chassis dynamometer and during on-road measurements over specified drive cycles.
X