Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Comparing Breakup Models in a Novel High Injection Pressure SCR System using Polyhedral Meshing

2014-10-13
2014-01-2816
A novel high pressure SCR spray system is investigated both experimentally and numerically. RANS simulations are performed using Star-CD and polyhedral meshing. This is one of the first studies to compare droplet breakup models and AdBlue injection with high injection pressure (Pinj=200 bar). The breakup models compared are the Reitz-Diwakar (RD), the Kelvin-Helmholtz and Rayleigh-Taylor (KHRT), and the Enhanced Taylor Analogy Breakup (ETAB) model. The models are compared with standard model parameters typically used in diesel fuel injection studies to assess their performance without any significant parameter tuning. Experimental evidence from similar systems seems to be scarce on high pressure AdBlue (or water) sprays using plain hole nozzles. Due to this, it is difficult to estimate a realistic droplet size distribution accurately. Thereby, there is potential for new experimental data to be made with high pressure AdBlue or water sprays.
Journal Article

Reduction of Heavy-Duty Diesel Exhaust Particle Number and Mass at Low Exhaust Temperature Driving by the DOC and the SCR

2012-09-10
2012-01-1664
The effect of SCR on nanoparticle emissions has been a subject for some recent diesel particle emission related studies. In this study, the effect of after-treatment (DOC and SCR) on particle emissions was studied with a heavy-duty off-road diesel engine (emission level stage 3b with an SCR). A special “transient cold test cycle” (TCTC) was designed to describe the SCR system operation at low exhaust gas temperatures. The particle instrumentation made it possible to measure on-line the particle number concentration, particle size distribution and chemical composition of particles. The largest particle number concentrations were measured after the exhaust manifold. The exhaust after-treatment was observed to reduce the total particle number concentration by 82.5% with the DOC and 95.7% with the DOC+SCR.
X