Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Metal Oxide Particle Emissions from Diesel and Petrol Engines

2012-04-16
2012-01-0841
All internal combustion piston engines emit solid nanoparticles. Some are soot particles resulting from incomplete combustion of fuels, or lube oil. Some particles are metal compounds, most probably metal oxides. A major source of metal compound particles is engine abrasion. The lube oil transports these abraded particles into the combustion zone. There they are partially vaporized and ultrafine oxide particles formed through nucleation [1]. Other sources are the metallic additives to the lube oil, metallic additives in the fuel, and debris from the catalytic coatings in the exhaust-gas emission control devices. The formation process results in extremely fine particles, typically smaller than 50 nm. Thus they intrude through the alveolar membranes directly into the human organism. The consequent health risk necessitates a careful investigation of these emissions and effective curtailment.
Technical Paper

Metal-Oxide Particles in Combustion Engine Exhaust

2010-04-12
2010-01-0792
Concern for engine particle emission led to EC regulations of the number of solid particles emitted by LDV and HDV. However, all conventional piston-driven combustion engines emit metal oxide particles of which only little is known. The main sources are abrasion between piston ring and cylinder, abrasion of bearing, cams and valves, catalyst coatings, metal-organic lubrication oil additives, and fuel additives. While abrasion usually generates particles in the μm range, high concentrations of nanosize metal oxide particles are also observed, probably resulting from nucleation processes during combustion. In general, metal oxides, especially from transition metals, have high surface reactivity and can therefore be very toxic, especially nanosize particles, which evidently provide a high specific bioactive surface and are suspected to penetrate into the organism. Hence, these particles must be scrutinized for quantity, size distribution and composition.
Technical Paper

Particle Emissions of a TDI-Engine with Different Lubrication Oils

2005-04-11
2005-01-1100
Due to increasing concern about health effects of fine and ultra-fine particles (nanoparticles) from combustion engines, the diesel particle filter technology (DPF) *) was extensively introduced to heavy duty and passenger cars in the last years. In this respect, a very important parameter is the irreversible plugging of the DPF with non-combustible ashes. The quality of lubrication oil, especially the ash content has a certain influence on regeneration intervals of diesel particle filters. In the present study, the effects of different lubrication oils on particle mass and nano-particle size distribution were investigated. The test engine was a modern diesel engine without particle filter system. A main goal was to find out, how different lubrication oils influence the particulate emissions and the contribution of oil to total particle emissions. Moreover, first results of a tracing study will be discussed.
X