Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

On Handling Waste Heat from Waste Heat Recovery Systems in Heavy-Duty Vehicles

2015-09-29
2015-01-2792
The automotive industry have become more and more interested in recovering waste heat from internal combustion engines, especially with future, tighter fuel and CO2 emission regulations in sight. In this study, we consider an automotive Rankine Waste Heat Recovery System on a long-haulage truck. This system transforms some of the combustion engine's waste heat into useful energy, but it still needs to return remaining heat to the surrounding, either through a direct condenser or from an indirect condenser via a Low Temperature Radiator, and this in the regular cooling module of the vehicle. We focus on the integration of WHR-dedicated LTR or condenser into a generic, conventional truck-cooling module with an AC condenser, a cross-flow Charge Air Cooler, a down-flow High Temperature Radiator, and a fan. WHR cooling concepts considered are an indirect system with LTR; either in front or back of CAC, a direct system with condenser either in front or back of CAC.
Technical Paper

The Effect of Unconventional Piston Movement on SI Engine Combustion and Emissions

2005-04-11
2005-01-1170
A major trend in current automotive research is hybridization of the power supply. This combination of electrical machine and combustion engine results, in some hybridization topologies, in a total decoupling of the combustion engine from the transmission. When the engine is decoupled from the transmission a new degree of freedom arises in engine design. The piston movement does not have to follow an evenly rotating shaft any more. It can be altered by the generator to achieve a movement found to be better from the point of efficiency or environmental concerns. Modelling work showed a potential of lowered NO emissions if the expansion could be delayed. The experimental study, conducted in a two piston Alvar engine, showed that the state of the art electrical machine (EM) propelling one of the crankshafts was too weak to change the crankshaft speed in an extent to give the fast volume changes required to change the emissions of the internal combustion engine (ICE).
Technical Paper

Simulation of HCCI – Addressing Compression Ratio and Turbo Charging

2002-10-21
2002-01-2862
This paper focuses on the performance and efficiency of an HCCI (Homogenous Charge Compression Ignition) engine system running on natural gas or landfill gas for stationary applications. Zero dimensional modeling and simulation of the engine, turbo, inlet and exhaust manifolds and inlet air conditioner (intercooler/heater) are used to study the effect of compression ratio and exhaust turbine size on maximum mean effective pressure and efficiency. The extended Zeldovich mechanism is used to estimate NO-formation in order to determine operation limits. Detailed chemical kinetics is used to predict ignition timing. Simulation of the in-cylinder process gives a minimum λ-value of 2.4 for natural gas, regardless of compression ratio. This is restricted by the NO formation for richer mixtures. Lower compression ratios allow higher inlet pressure and hence higher load, but it also reduces indicated efficiency.
Technical Paper

Early Swedish Hot-Bulb Engines - Efficiency and Performance Compared to Contemporary Gasoline and Diesel Engines

2002-03-04
2002-01-0115
“Hot Bulb engines” was the popular name of the early direct injected 2-stroke oil engine, invented and patented by Carl W. Weiss 1897. This paper covers engines of this design, built under license in Sweden by various manufacturers. The continuous development is demonstrated through examples of different combustion chamber designs. The material is based on official engine performance evaluations on stationary engines and farm tractors from 1899 to 1995 made by the National Machinery Testing Institute in Sweden (SMP). Hot-bulb, diesel and spark ignited engines are compared regarding efficiency, brake mean effective pressure and specific power (power per displaced volume). The evaluated hot-bulb engines had a fairly good efficiency, well matching the contemporary diesel engines. At low mean effective pressures, the efficiency of the hot-bulb engines was even better than that of subsequent diesel engines.
Technical Paper

Experiments and Simulation of a Six-Cylinder Homogeneous Charge Compression Ignition (HCCI) Engine

2000-10-16
2000-01-2867
A 6-cylinder truck engine was modified to run in HCCI-mode. The aim was to show whether or not it is possible having HCCI run a multi-cylinder engine, to provide brake values of emissions and efficiency and to verify models for engine system simulation. The work proved that it is feasible to use HCCI in multi-cylinder engines with high brake efficiency. Emissions' strong dependence on inlet temperature and octane number was demonstrated. The numerical models simulated the mean effective pressure with high precision, while inlet and exhaust pressures were less accurate, mainly due to the limitations of the turbo maps used.
Technical Paper

Hydrocarbon (HC) Reduction of Exhaust Gases from a Homogeneous Charge Compression Ignition (HCCI) Engine Using Different Catalytic Mesh-Coatings

2000-06-19
2000-01-1847
A FeCrAlloy mesh-type catalyst has been used to reduce hydrocarbons (HC) and carbon monoxide (CO) emissions from a 4-stroke HCCI engine. Significant for the HCCI engine is a high compression ratio and lean mixtures, which leads to a high efficiency, low combustion temperatures and thereby low NOx emissions, <5 pmm, but also low exhaust temperatures, around 300°C. It becomes critical to: 1. Ensure that the HCCI-combustion generates as low HC emissions as possible, this can be done by very precise control of engine inlet conditions and, if possible, compression ratio. 2. Ensure that the exhaust temperature is high enough, without loosing efficiency or producing NOx; in order to get an oxidizing catalyst to work. 3. Select proper catalyst material for the catalyst so that the exhaust temperature can be as low as possible.
X