Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Transient Exhaust Gas Recirculation Ratio Measurement Utilizing Heated NDIR Method

2012-04-16
2012-01-0886
Most of the recent clean diesel engines are equipped with an exhaust gas recirculation (EGR) technology in order to meet the strict criteria of NOx and particulate matter (PM) as required in the current emission regulations. More attention to strict EGR control is becoming required. Accurate and fast transient EGR ratio operation is becoming very critical in the field of the emission control. The EGR ratio is typically monitored by CO₂ trace method, in which CO₂ emitted from engine, is utilized as a tracer gas. The EGR ratio can be obtained from CO₂ concentration measured at engine intake and engine out at the same time. In this study, authors have developed a new EGR analyzer consisting of two CO₂ detectors, to achieve required performance for transient measurement, i.e., short delay time and quick response, negligible difference between two CO₂ detectors, and capability of wet measurement.
Technical Paper

Development of a Real-time NH3 Gas Analyzer Utilizing Chemi-luminescence Detection for Vehicle Emission Measurement

2004-10-25
2004-01-2907
Recently, after-treatment techniques for diesel engine emission have made remarkable progress with the development of suitable De-NOx catalysts. The urea-injection SCR system is one of the candidates for a high efficiency De-NOx method for diesel engine emissions. This system reduces NOx through a reaction with ammonia (NH3) that is generated from injected urea. In this system, it is very important to control the amount and timing of the urea injection so as to minimize the NH3 gas slip. Therefore, NH3 gas measurement is becoming important during the development of NOx after-treatment systems even though NH3 is not a target component of the current emission regulations. In this paper, a new NH3 gas analyzer utilizing a chemi-luminescence detection (CLD) method has been developed. The new NH3 analyzer consists of dual detectors (DCLDs) and a furnace for a NH3 oxidization catalyst. Real-time concentration of NH3 can be calculated from the difference of NOx readings of two detectors.
X