Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

The Lattice-Boltzmann Method: An Alternative to LES for Complex Aerodynamic and Aeroacoustic Simulations in the Aerospace Industry

2015-09-15
2015-01-2575
An overview of the theory and applications of the Lattice-Boltzmann Method (LBM) is presented in this paper. LBM has gained a reputation over the past decade as a viable alternative to traditional Reynolds-averaged Navier-Stokes (RANS) based methods for the solution of computational fluid dynamics (CFD) applications in the aerospace and automotive industries. The theoretical background of the method is presented and the key differentiators to traditional RANS methods are summarized. We then look at current and potential future applications of CFD in the aerospace industry and identify a number of areas where the limitations of RANS tools, in particular with regard to unsteady flows and the handling of complex geometries, prevent a deeper penetration of CFD into product development processes in the aerospace industry.
Technical Paper

Lattice-Boltzmann Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil

2015-06-15
2015-01-2084
A Lattice-Boltzmann approach is used to simulate the aerodynamics of complex three-dimensional ice shapes on a NACA 23012 airfoil. The digitally produced high fidelity geometrical ice shapes were created using a novel laser scanning technique in the NASA Icing Research Tunnel. The geometrically fully resolved unsteady simulations are conducted on two ice shapes representing a roughness type and a horn type icing on the leading edge of the airfoil. Comparisons between simulation and experiment of lift, drag, and pitching moment as well as pressure distributions indicate overall a good qualitative agreement in capturing the aerodynamic degradation. Especially for the horn-type ice shape, the quantitative agreement is also mostly very good. Analysis of the flow structures indicates furthermore a good capturing of the three-dimensional separation behavior of the flow.
X