Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Parameter Identification of Sled Test Method to Simulate Vehicle Soil Trip Rollover Dynamic Accurately by Numerical Simulation Considering Soil-Vehicle Interaction

2013-04-08
2013-01-0459
FMVSS 226 will become effective on September 1, 2013 with the purpose of mitigating occupant ejections through the vehicle side windows. In order to use deployable counter measures to mitigate ejection, vehicle rollover tests are needed to design deployment algorithms for rollover condtions. Vehicle manufacturers have to define their own test procedures, because FMVSS 226 does not define any rollover test methods. The soil trip rollover test is a vehicle rollover test method in which a vehicle is propelled into a soil pool to measure its rollover characteristics. Some of difficulties in soil trip rollover tests include proper maintenance of soil, for example, under fluctuating humidity and homogeneity of soil in the pool, so as to ensure stable repeatability of test results. Protection of onboard measurement equipment in a test vehicle from soil incursion when the vehicle rolls over can also be a challenge.
Journal Article

A Study of the Ditch Fall-over Test Method Using Numerical Simulation

2012-04-16
2012-01-0094
Rollover tests are performed to design the algorithms for deployment of countermeasures to mitigate occupant ejection in rollover situations. The ditch fall-over test is one of the rollover test methods in which a vehicle on a steep slope, representing a ditch embankment, is subjected to a forced steering operation that results in a turnover. An accurate prediction method is needed to determine the specifications of the ditch fall-over test equipment and test conditions because a test-based trial-and-error process involves high cost of performing repeated experiments and preperation for various types of related test equipment. This paper presents a newly developed numerical simulation method for simulating vehicle behavior in ditch fall-over tests.
Technical Paper

Development of Pole Side Impact Sled Test Method using Multiple Actuators for EuroNCAP

2012-04-16
2012-01-0095
The pole side impact test has been mandatory in Euro NCAP since 2009 and it includes, in addition to the head, assessments on other critical body regions that might be affected such as the chest, abdomen and pelvis. This paper describes a new test method for predicting Anthropomorphic Test Device responses to calculate injury index in side impact tests of a rigid pole under Euro NCAP conditions. Simplified sled tests are very effective in reducing the cost and time of development of more advanced side impact safety devices. To accomplish sled tests successfully, it is necessary to reconstruct accurately the combined dynamic deformation behavior of door and seat in pole impact. That behavior varies among different dummy response regions. Conventional sled test methods, published in previous literature, can reconstruct the deformation of the entire door using a single actuator at constant intrusion velocity but actual door velocity isn't constant in full scale vehicle crash tests.
Technical Paper

Continuous Simulation of Automobile Running and Crash Using a Finite Element Method

2007-08-05
2007-01-3681
Vehicle's dynamic pre-crash state and associated occupant motion may influence the damage and injury of traffic accidents. Therefore it is important to simulate phenomena before and after impact continuously in order to analyze the damage mechanisms of traffic accidents. In this study, a finite element vehicle model that can simulate both running and crash is developed and verified by some experimental results, and the methods to speed up and stabilize computation that enable continuous simulation are developed and compared with conventional methods. A numerical example that simulates a real traffic accident situation is also shown.
Technical Paper

Vehicle Cornering and Braking Behavior Simulation Using a Finite Element Method

2005-04-11
2005-01-0384
This paper presents a vehicle dynamic simulation using a finite element method for performing more accurate simulations under extreme operating conditions with large tire deformation. A new hourglass control scheme implemented in an explicit finite element analysis code LS-DYNA(1) is used to stabilize tire deformation. The tires and suspension systems are fully modeled using finite elements and are connected to a rigid body that represents the whole vehicle body as well as the engine, drive train system and all other interior parts. This model is used to perform cornering and braking behavior simulations and the results are compared with experimental data. In the cornering behavior simulation, the calculated lateral acceleration and yaw rate at the vehicle's center of gravity agree well with the experimental results. Their nonlinear behavior is also well expressed.
X