Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Challenges and Solutions for Range Extenders - From Concept Considerations to Practical Experiences

2011-06-09
2011-37-0019
For a broad acceptance of electric vehicles, the trade-off between all electric range and battery cost respectively weight represents the most important challenge. The all electric range obtained under real world conditions most often deviates significantly from the nominal value which is measured under idealized conditions. Under extreme conditions - slow traffic and demanding requirements for cabin heating or cooling - the electrical range might become less a question of spatial distance but even more of total operation time. Whereas with conventional powertrain, high flexibility of the total driving range can be obtained without sacrificing cost, with a pure battery vehicle this results in extreme high cost and weight of the energy storage. Therefore the difference between the typical daily driving range (e.g. in Germany 80-90% is below 50 km) and the minimum total range requested by most customers for acceptance of battery vehicles (200- 250 km), becomes essential.
Technical Paper

Potential of high technology 50cm3 two stroke and four stroke engines

2007-10-30
2007-32-0013
Future exhaust emission targets and increasing customer demands call for the implementation of enhanced engine technologies, as well known from automotive applications, into small capacity engine categories. Especially the applied engineering solutions in the market of motor vehicles driven by engines up to 50 cm3 displacement have been significantly changed in the last years. Beside low cost technologies (air cooled two stroke or four stroke engines with carburetor), enhanced mixture preparation and exhaust gas after treatment systems come to use. Highly technological two stroke engines are equipped with direct fuel injection systems in combination with efficient exhaust gas after treatment methods; in four stroke engine applications intake port fuel injection systems in combination with oxidation catalysts or 3-way catalytic conversion are established on the market.
Technical Paper

New generation of metallic substrates for catalytic converters in small engine application

2007-10-30
2007-32-0057
The new generation of metallic substrates for catalytic converters used in the two and three wheeler industry is capable of improving conversion behavior even with smaller catalyst size. The lowering of production costs due to less use of precious metal is possible. This novel technological application in motorcycle vehicle class improves exhaust emission performance and introduces a new competitive product on the market. Specially developed foil structures, which transform a laminar exhaust gas flow to a turbulent one, significantly improve exhaust gas mixing behavior in the catalyst. This publication is dealing with the analysis of different metallic substrate foil structures for the catalyst conversion performance and the light-off characteristics for the leading state of the art four stroke 150 cm3 motorcycle technology developed for the Asian market.
Technical Paper

Exhaust Emission Reduction in Small Capacity Two- and Four-Stroke Engine Technologies

2006-11-13
2006-32-0091
State of the art technologies of 2 and 4 stroke engines have to fulfill severe future exhaust emission regulations, with special focus on the aspects of rising performance and low cost manufacturing, leading to an important challenge for the future. In special fields of applications (e.g. mopeds, hand held or off-road equipment) mainly engines with simple mixture preparation systems, partially without exhaust gas after treatment are used. The comparison of 2 and 4 stroke concepts equipped with different exhaust gas after treatment systems provides a decision support for applications in a broad field of small capacity engine classes.
Technical Paper

Thermodynamic Analysis of a Crankcase Supercharged Four Stroke Engine with a Two Cycle Lubrication System

2006-04-03
2006-01-0404
An efficient and economical method to increase the performance of four stroke engines can be supercharging by compressing the intake air with the help of the bottom side of the piston. This publication describes parts of a research project with the target to develop a supercharged four stroke engine with a closed loop lubrication system for the crank train also including the lubrication system for the cylinder head. With the help of a thermodynamic engine analysis, the influence of the crankcase pump on the engine performance behavior and the distribution of losses has been researched and discussed, with the supercharged engine being compared to different naturally aspirated competitors.
Technical Paper

Flow and Engine Test Bench Development of Crankcase Supercharged Four Stroke Engine with Oil Separating System

2004-09-27
2004-32-0002
An efficient and low cost way to supercharge a four stroke engine is to use the bottom side of the piston to increase the volumetric efficiency. In comparison to naturally aspirated (NA) engines, this supercharging concept pre-compresses the intake air in the crankcase resulting in a significant increase of torque and power output. On a prototype engine fundamental research activities were carried out on a driven flow test bench to optimize the volumetric efficiency by varying the influencing parameters. Subsequently the characteristics of different mixture preparation concepts (carburetor and fuel injection system) in combination with the treated supercharging concept have been studied during the development phase on engine test bench.
Technical Paper

Potential of the 50cc Two Wheeler Motor Vehicle Class in Respect of Future Exhaust Emission Targets

2004-09-27
2004-32-0050
Future emission regulations for two wheeler vehicles driven by small capacity engines will include the cold start characteristics and the durability behavior. [1] Based on the European homologation cycle ECE R47 and an additional cold start test cycle, a number of scooters driven by 50cc engine concepts in combination with different exhaust gas after treatment strategies have been analyzed and evaluated. The test series have been performed with the help of a CVS measurement system according the European homologation instruction and in addition with the help of an online emission recorder measurement.
X